GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-30
    Description: This Scientific Summary on Multiple Ocean Stressors for Policy Makers offers a reference for all concerned stakeholders to understand and discuss all types of ocean stressors. This document will help coordinate action to better understand how multiple stressors interact and how the cumulative pressures they cause can be tackled and managed. It is a first step towards increased socio-ecological resilience to multiple ocean stressors (Figure 1). Ecosystem-Based Management (EBM)1 recognizes the complex and interconnected nature of ecosystems, and the integral role of humans in these ecosystems. EBM integrates ecological, social and governmental principles. It considers the tradeoffs and interactions between ocean stakeholders (e.g. fishing, shipping, energy extraction) and their goals, while addressing the reduction of conflicts and the negative cumulative impacts of human activities on ecosystem resilience and sustainability. Thus, EBM is an ideal science-based approach for managing the impacts of cumulative stressors on marine ecosystems. The United Nations Decade of Ocean Science for Sustainable Development (2021–2030; Ocean Decade), which is based on a multi-stakeholder consultative process, identified 10 Ocean Decade Challenges. Challenge 2: Understand the effects of multiple stressors on ocean ecosystems, and develop solutions to monitor, protect, manage and restore ecosystems and their biodiversity under changing environmental, social and climate conditions addresses the overall outcomes of the Decade. In particular, outcomes aimed at a clean, healthy and resilient, safe and predicted, sustainably harvested and productive, and accessible ocean, with open and equitable access to data, information and technology and innovation by 2030. This Scientific Summary for Policy Makers is also a call to action underlining the urgency to understand, model and manage multiple ocean stressors now. We cannot manage what we do not understand, and we cannot be efficient without prioritization of ocean actions appropriate to the place and time.
    Description: OPENASFA INPUT The complete report should be cited as follows: IOC-UNESCO. 2022. Multiple Ocean Stressors: A Scientific Summary for Policy Makers. P.W. Boyd et al. (eds). Paris, UNESCO. 20 pp. (IOC Information Series, 1404) doi:10.25607/OBP-1724
    Description: Published
    Description: Refereed
    Keywords: Oceans ; Marine Ecosystems ; Marine pollution ; Global warming ; Human activities effects ; Environmental monitoring ; Oceanographic Research
    Repository Name: AquaDocs
    Type: Report
    Format: 22pp.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO−3 cotransporter (NBC1), pendrin-like Cl−/HCO−3 exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO−3 secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO−3 levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...