GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (70)
  • Springer  (2)
  • Frontiers  (1)
  • Public Library of Science
Document type
Keywords
  • 1
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During the joint Chilean-German-Italian Magellan “Victor Hensen” Campaign in November 1994, samples were taken on a cruise of the RV Victor Hensen in order to obtain faunistic information from the Beagle Channel. Peracarida are an important fraction of the macrobenthos and were sampled in high numbers. Using an epibenthic sledge, 104,618 individuals were collected in total, comprising 62,860 Amphipoda, 14,685 Cumacea, 17,992 Isopoda, 7,168 Mysidacea and 1,893 Tanaidacea. To allow comparisons between stations, these numbers were standardized to a 1,000 m trawling distance, yielding about 368,000 individuals from all stations. Peracarida were most abundant at station 1213, southeast of Isla Picton, in the oceanic area close to the eastern entrance of the Beagle Channel (166,361 ind./1,000 m). Generally, stations off the eastern entrance were characterized by a high number of Peracarida. In the Beagle Channel itself, however, the abundance decreased from east to west with a single peak in peracarid number in the channel east of Punta Yámana. Numbers were much lower at the western entrance (792 ind./1,000 m) and even fewer Peracarida were collected in the Magdalena Channel off Punta Sánchez. Lowest numbers were recorded close to the glacier Romanche and west of Isla Picton at two locations. The composition of peracarid crustaceans was analysed in relation to the background of hydrographical and sedimentological differences, nutrient availability, and knowledge of the other associated fauna in the Beagle Channel. The available data lead us to conclude that abundance and composition of peracarid taxa in and south of the Beagle Channel (off the eastern entrance) seem to be influenced mainly by sediment composition and hydrographical characteristics as indicated above.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-19
    Description: Hydrothermal vents on mid-oceanic ridges are patchily distributed and host many taxa endemic to deep-sea chemosynthetic environments, whose dispersal may be constrained by geographical barriers. The aim of this study was to investigate the connectivity of three populations of the ‘scaly-foot gastropod’ (Chrysomallon squamiferum Chen et al., 2015), a species endemic to hydrothermal vents in the Indian Ocean, amongst two vent fields on the Central Indian Ridge (CIR) and Longqi field, the first sampled vent field on the Southwest Indian Ridge (SWIR). Connectivity and population structure across the two mid-oceanic ridges were investigated using a 489-bp fragment of the cytochrome oxidase c subunit I (COI) gene. Phylogeographical approaches used include measures of genetic differentiation (FST), reconstruction of parsimony haplotype network, mismatch analyses and neutrality tests. Relative migrants per generation were estimated between the fields. Significant differentiation (FST = 0.28–0.29, P 〈 0.001) was revealed between the vent field in SWIR and the two in CIR. Signatures were detected indicating recent bottleneck events followed by demographic expansion in all populations. Estimates of relative number of migrants were relatively low between the SWIR and CIR, compared with values between the CIR vent fields. The present study is the first to investigate connectivity between hydrothermal vents across two mid-ocean ridges in the Indian Ocean. The phylogeography revealed for C. squamiferum indicates low connectivity between SWIR and CIR vent populations, with implications for the future management of environmental impacts for seafloor mining at hydrothermal vents in the region, as proposed for Longqi.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: During RV MS Merian expedition MSM75, an international, multidisciplinary team explored the Reykjanes Ridge from June to August 2018. The first area of study, Steinahóll (150–350 m depth), was chosen based on previous seismic data indicating hydrothermal activity. The sampling strategy included ship- and AUV-mounted multibeam surveys, Remotely Operated Vehicle (ROV), Epibenthic Sledge (EBS), and van Veen grab (vV) deployments. Upon returning to Steinahóll during the final days of MSM75, hydrothermal vent sites were discovered using the ROV Phoca (Kiel, GEOMAR). Here we describe and name three new, distinct hydrothermal vent site vulnerable marine ecosystems (VMEs); Hafgufa, Stökkull, Lyngbakr. The hydrothermal vent sites consisted of multiple anhydrite chimneys with large quantities of bacterial mats visible. The largest of the three sites (Hafgufa) was mapped, and reconstructed in 3D. In total 23,310 individual biological specimens were sampled comprising 41 higher taxa. Unique fauna located in the hydrothermally venting areas included two putative new species of harpacticoid copepod (Tisbe sp. nov. and Amphiascus sp. nov.), as well as the sponge Lycopodina cupressiformis (Carter, 1874). Capitellidae Grube, 1862 and Dorvilleidae Chamberlin, 1919 families dominated hydrothermally influenced samples for polychaetes. Around the hydrothermally influenced sites we observed a notable lack of megafauna, with only a few species being present. While we observed hydrothermal associations, the overall species composition is very similar to that seen at other shallow water vent sites in the north of Iceland, such as the Mohns Ridge vent fields, particularly with peracarid crustaceans. We therefore conclude the community overall reflects the usual “background” fauna of Iceland rather than consisting of “vent endemic” communities as is observed in deeper vent systems, with a few opportunistic species capable of utilizing this specialist environment.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-19
    Description: Sponges (Porifera) host diverse and species-specific communities of microbial symbionts with which they maintain tight interactions. However, knowledge on the microbiomes of sponges from deep waters and remote polar areas is still scarce, especially for the sponge class Hexactinellida. Therefore, our aim was to describe the community composition, richness and density of microbial symbionts of Antarctic deep-water sponges, including several species of hexactinellids, and relate the findings to host ultrastructure and histology. During the Antarctic expeditions PS96 (RV Polarstern, 2015/16, eastern Weddell Sea) and JR17003a (RRS James Clark Ross, 2018, western Weddell Sea), 28 sponge specimens, bottom water and sediment were sampled for molecular analysis of microbial communities. The sponges were collected from deep habitats of 290-845 m by Bottom Trawl or Agassiz Trawl and comprised 19 hexactinellids and 9 demosponges. Bottom water was collected with a CTD rosette sampler which also measured environmental data (temperature, salinity, oxygen) close to the start or end point of the trawls and at four additional stations. Sediment was collected from the Agassiz trawl together with sponge samples during JR17003a. The molecular microbiome analysis targeted bacteria and was based on 16S rRNA gene sequencing of the V3-V4 variable regions. Sequences were processed using the QIIME2 environment. Amplicon sequence variants (ASVs) were generated with the DADA2 algorithm and classified based on the Silva 132 99% OTUs 16S database. Eight sponge specimens collected during JR17003a were further investigated microscopically for microbial symbionts, sponge histology and ultrastructure. Histological sections of 7-30 µm were stained in either Masson's trichrome or Hematoxylin/Eosin and images captured on a Zeiss Axioskop 2 plus with a QiCam camera using Northern Eclipse software. Ultrastructural sections of 60 nm were stained in uranyl acetate and lead citrate and then viewed and photographed with a Philips Morgagni transmission electron microscope equipped with a Gatan CCD camera. This Data Collection includes sampling information, environmental data, NCBI accession numbers and photographs of the analyzed sponges, data on the microbial symbiont communities (amplicon sequence variants and microbial phyla) of sponges, seawater and sediment, as well as micrographs of sponge histology and ultrastructure.
    Keywords: 16S rRNA; Antarctic; AWI_BPP; Bentho-Pelagic Processes @ AWI; Demospongiae; Hexactinellida; Histology; JR17003a; microbes; microbiome; microscopy; PS96; sequencing; Sponges; ultrastructure; Weddell Sea
    Type: dataset bundled publication
    Format: application/zip, 8 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gutt, Julian; Barratt, Iain; Domack, Eugene W; d'Udekem d'Acoz, Cédric; Dimmler, Werner; Grémare, Antoine; Heilmayer, Olaf; Isla, Enrique; Janussen, Dorte; Jorgensen, Elaina; Kock, Karl-Hermann; Lehnert, Linn Sophia; López-González, Pablo José; Langner, Stephanie; Linse, Katrin; Manjón-Cabeza, Maria Eugenia; Meißner, Meike; Montiel, Américo; Raes, Maarten; Robert, Henri; Rose, Armin; Schepisi, Elisabet Sañé; Saucède, Thomas; Scheidat, Meike; Schenke, Hans Werner; Seiler, Jan; Smith, Craig (2011): Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Research Part II: Topical Studies in Oceanography, 58(1-2), 74-83, https://doi.org/10.1016/j.dsr2.2010.05.024
    Publication Date: 2024-07-19
    Description: The marine ecosystem on the eastern shelf of the Antarctic Peninsula was surveyed 5 and 12 years after the climate-induced collapse of the Larsen A and B ice shelves. An impoverished benthic fauna was discovered, that included deep-sea species presumed to be remnants from ice-covered conditions. The current structure of various ecosystem components appears to result from extremely different response rates to the change from an oligotrophic sub-ice-shelf ecosystem to a productive shelf ecosystem. Meiobenthic communities remained impoverished only inside the embayments. On local scales, macro- and mega-epibenthic diversity was generally low, with pioneer species and typical Antarctic megabenthic shelf species interspersed. Antarctic Minke whales and seals utilised the Larsen A/B area to feed on presumably newly established krill and pelagic fish biomass. Ecosystem impacts also extended well beyond the zone of ice-shelf collapse, with areas of high benthic disturbance resulting from scour by icebergs discharged from the Larsen embayments.
    Keywords: Agassiz Trawl; AGT; ANT-XXIII/8; Bottom trawl; BT; CAML; Census of Antarctic Marine Life; CT; CTD/Rosette; CTD-RO; Drake Passage; Dundee Island; EBA; Evolution and Biodiversity in the Antarctic; Polarstern; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; PS69; PS69/602-1; PS69/603-1; PS69/605-2; PS69/609-2; PS69/614-2; PS69/619-2; PS69/622-2; PS69/624-2; PS69/629-2; PS69/631-2; PS69/634-2; PS69/638-2; PS69/643-2; PS69/648-2; PS69/651-2; PS69/654-2; PS69/656-2; PS69/659-2; PS69/661-1; PS69/664-2; PS69/667-2; PS69/671-2; PS69/674-2; PS69/675-1; PS69/680-2; PS69/682-2; PS69/686-2; PS69/689-2; PS69/691-2; PS69/693-2; PS69/695-2; PS69/697-2; PS69/699-1; PS69/699-2; PS69/700-2; PS69/700-4; PS69/700-5; PS69/702-1; PS69/702-5; PS69/702-9; PS69/703-1; PS69/703-2; PS69/703-3; PS69/703-5; PS69/706-1; PS69/706-2; PS69/709-1; PS69/709-2; PS69/710-1; PS69/710-5; PS69/710-6; PS69/711-7; PS69/714-1; PS69/714-2; PS69/715-1; PS69/716-1; PS69/717-1; PS69/718-8; PS69/719-1; PS69/720-2; PS69/721-2; PS69/722-1; PS69/722-4; PS69/722-5; PS69/724-1; PS69/725-1; PS69/725-3; PS69/725-6; PS69/726-2; PS69/726-3; PS69/726-4; PS69/726-5; PS69/727-1; PS69/728-1; PS69/728-2; PS69/728-3; PS69/8-track; Remote operated vehicle CHEROKEE; Remote operated vehicle SPRINT 103; ROVC; ROVS; Scotia Sea, southwest Atlantic; Snow Hill Island; South Atlantic Ocean; SPP1158; Underway cruise track measurements; Weddell Sea; Weddell Sea, Larsen-A; Weddell Sea, Larsen-B
    Type: dataset publication series
    Format: application/zip, 38 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kaiser, Stefanie; Barnes, David K A; Linse, Katrin; Brandt, Angelika (2008): Epibenthic macrofauna associated with the shelf and slope of a young and isolated Southern Ocean island. Antarctic Science, 20(03), 281-290, https://doi.org/10.1017/S0954102008001107
    Publication Date: 2024-07-19
    Description: The remote South Sandwich arc is an archipelago of small volcanic islands and seamounts entirely surrounded by deep water and about 600 km away from the closest island, South Georgia. As some of the youngest islands (〈 5 m.y.) in the Southern Ocean they are ideal for studying colonization processes of the seabed by benthic fauna, but are rarely investigated because of remoteness and extreme weather. The current study attempted to quantify the richness and abundance of the epibenthic macrofauna around the Southern Thule group by taking five epibenthic sledge samples along a depth transect including three shelf (one at 300 m and two at 500 m) and two slope stations (1000 and 1500 m). Our aim was to investigate higher taxon richness and community composition in an isolated Antarctic locality, since recent volcanic eruptions between 1964 and 1997. We examined patterns across all epibenthic macrofauna at phylum and class levels, and investigated trends in some model groups of crustaceans to order and family level. We found that abundance was highest in the shallowest sample and decreased with depth. Shelf samples (300 and 500 m) were dominated by molluscs and malacostracans while at the deeper stations (1000 and 1500 m) nematodes were the most abundant taxon. Surprisingly, the shallow shelf was dominated by animals with restricted dispersal abilities, such as direct developing brooders (malacostracans) or those with lecithotrophic larvae (bivalves of the genus Yoldiella, most bryozoan species). Despite Southern Thule's geological youth, recent eruptions, and its remoteness the shallow shelf was rich in higher taxa (phyla/classes) as well as orders and families of our model groups. Future work at higher taxonomic resolution (species level) should greatly increase understanding of how life has reached and established on these young and highly disturbed seabeds.
    Keywords: International Polar Year (2007-2008); IPY
    Type: dataset publication series
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brandt, Angelika; Bathmann, Ulrich; Brix, Saskia; Cisewski, Boris; Flores, Hauke; Göcke, C; Janussen, Dorte; Krägefsky, Sören; Kruse, Svenja; Leach, Harry; Linse, Katrin; Pakhomov, Evgeny A; Peeken, Ilka; Riehl, Torben; Sauter, Eberhard-Jürgen; Sachs, Oliver; Schüller, M; Schrödl, M; Schwabe, E; Strass, Volker H; van Franeker, Jan Andries; Wilmsen, Markus (2011): Maud Rise - a snapshot through the water column. Deep Sea Research Part II: Topical Studies in Oceanography, 58(19-20), 1962-1982, https://doi.org/10.1016/j.dsr2.2011.01.008
    Publication Date: 2024-07-19
    Description: The benthic fauna was investigated during the expedition ANT-XXIV/2 (2007/08) in relation to oceanographic features, biogeochemical properties and sediment characteristics, as well as the benthic, pelagic and air-breathing fauna. The results document that Maud Rise (MR) differs distinctly from surrounding deep-sea basins investigated during previous Southern Ocean expeditions (ANDEEP 2002, 2005). Considering all taxa, the overall similarity between MR and adjacent stations was low (~20% Bray-Curtis-Similarity), and analyses of single taxa show obvious differences in species composition, abundances and densities. The composition and diversity of bivalves of MR are characterised by extremely high abundances of three species, especially the small sized Vesicomya spp. Exceptionally high gastropod abundance at MR is due to the single species Onoba subantarctica wilkesiana, a small brooder that may prey upon abundant benthic foraminiferas. The abundance and diversity of isopods also show that one family, Haplomunnidae, occurs with a surprisingly high number of individuals at MR while this family was not found at any of the 40 bathyal and abyssal ANDEEP stations. Similarly, polychaetes, especially the tube-dwelling, suspension-feeder fraction, are represented by species not found at the comparison stations. Sponges comprise almost exclusively small specimens in relatively high numbers, especially a few species of Polymastiidae. Water-column sampling from the surface to the seafloor, including observations of top predators, indicate the existence of a prospering pelagic food web. Local concentrations of top predators and zooplankton are associated with a rich ice-edge bloom located over the northern slope of MR. There the sea ice melts, which is probably accelerated by the advection of warm water at intermediate depth. Over the southern slope, high concentrations of Antarctic krill (Euphausia superba) occur under dense sea ice and attract Antarctic Minke Whales (Balaenoptera bonaerensis) and several seabird species. These findings suggest that biological prosperity over MR is related to both oceanographic and sea-ice processes. Downward transport of the organic matter produced in the pelagic realm may be more constant than elsewhere due to low lateral drift over MR.
    Keywords: AWI; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; SPP1158
    Type: dataset publication series
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Römer, Miriam; Torres, Marta E; Kasten, Sabine; Kuhn, Gerhard; Graham, Alastair G C; Mau, Susan; Little, Crispin T S; Linse, Katrin; Pape, Thomas; Geprägs, Patrizia; Fischer, David; Wintersteller, Paul; Marcon, Yann; Rethemeyer, Janet; Bohrmann, Gerhard; Shipboard scientific party ANT-XXIX/4 (2014): First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth and Planetary Science Letters, 403, 166-177, https://doi.org/10.1016/j.epsl.2014.06.036
    Publication Date: 2024-07-19
    Description: An extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys documented the presence of 133 gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Video-based sea floor observations confirmed the sea floor origin of the gas emissions and spatially related microbial mats. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom waters. Stable carbon isotopic signatures pointed to a predominant microbial methane formation, presumably based on high organic matter sedimentation in this region. Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glacially-affected areas, opens up the possibility that methane seepage is a more widespread phenomenon in polar and sub-polar regions than previously thought.
    Keywords: AWI_Paleo; Center for Marine Environmental Sciences; MARUM; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: dataset publication series
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brandt, Angelika; Gooday, Andrew J; Brandão, Simone N; Brix, Saskia; Brökeland, Wiebke; Cedhagen, Tomas; Choudhury, Madhumita; Cornelius, Nils; Danis, Bruno; De Mesel, Ilse; Diaz, Robert; Gillan, David C; Ebbe, Brigitte; Howe, John; Janussen, Dorte; Kaiser, Stefanie; Linse, Katrin; Malyutina, Marina; Pawlowski, Jan; Raupach, Michael R; Vanreusel, Ann (2007): First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature, 447(7142), 307-311, https://doi.org/10.1038/nature05827
    Publication Date: 2024-07-19
    Description: Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa1. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf2 and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region2, 3. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748-6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.
    Keywords: AWI; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; SPP1158
    Type: dataset publication series
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Arntz, Wolf E; Thatje, Sven; Linse, Katrin; Avila, Conxita; Ballesteros, Manuel; Barnes, David K A; Cope, Thérèse; Cristobo, Francisco J; De Broyer, Claude; Gutt, Julian; Isla, Enrique; López-González, Pablo José; Montiel, Américo; Munilla, Tomás; Ramos-Esplá, Alfonso A; Raupach, Michael R; Rauschert, Martin; Rodriguez, Estefania; Teixidó, Núria (2005): Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. Polar Biology, 29(2), 83-96, https://doi.org/10.1007/s00300-005-0047-8
    Publication Date: 2024-07-19
    Description: Bouvet (Bouvetøya) is a geologically young and very remote island just south of the Polar Front. Here we report samples taken during the RV "Polarstern" cruise ANTXXI/2 on 3 days in November 2003 and January 2004. This work was part of SCAR's EASIZ programme and intended, by providing data on the marine fauna of this "white gap" in the Atlantic sector of the Southern Ocean, to contribute to identifying the role of Bouvet in the faunal exchange between the Sub- and high Antarctic. While this goal demands extensive molecular analysis of the material sampled (future work), a checklist of the samples and data at hand widens the faunal and environmental inventory substantially. We suggest some preliminary conclusions on the relationship of Bouvet Island's fauna with that of other regions, such as Magellanic South America, the Antarctic Peninsula, and the high Antarctic Weddell Sea, which have been sampled previously. There seem to be different connections for individual higher taxa rather than a generally valid consistent picture.
    Keywords: AWI; EASIZ; Ecology of the Antarctic Sea Ice Zone; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; SPP1158
    Type: dataset publication series
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...