GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: The sea surface microlayer (SML) is the thin boundary layer between the ocean and the atmosphere, making it important for air-sea exchange processes. However, little is known about what controls organic matter composition in the SML. In particular, there are only few studies available on the differences of the SML of various oceanic systems. Here, we compared the organic matter and neuston species composition in the SML and the underlying water (ULW) at 11 stations with varying distance from the coast in the Peruvian upwelling regime, a system with high emissions of climate relevant trace gases, such as N2O and CO2. In the open ocean, organic carbon, and amino acids were highly enriched in the SML compared to the ULW. The enrichment decreased at the coastal stations and vanished in the upwelling regime. At the same time, the degradation of organic matter increased from the open ocean to the upwelling stations. This suggests that in the open ocean, upward transport processes or new production of organic matter within the SML are faster than degradation processes. Phytoplankton was generally not enriched in the SML, one group though, the Trichodesmium-like TrL (possibly containing Trichodesmium), were enriched in the open ocean but not in the upwelling region indicating that they find a favorable habitat in the open ocean SML. Our data show that the SML is a distinct habitat; its composition is more similar among different systems than between SML and ULW of a single station. Generally the enrichment of organic matter is assumed to be reduced when encountering low primary production and high wind speeds. However, our study shows the highest enrichments of organic matter in the open ocean which had the lowest primary production and the highest wind speeds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-05
    Description: Satellite remote sensing of chlorophyll a concentration (Chl-a) in the Arctic Ocean is spatially and temporally limited and needs to be supplemented and validated with substantial volumes of in situ observations. Here, we evaluated the capability of obtaining highly resolved in situ surface Chl-a using underway spectrophotometry operated during two summer cruises in 2015 and 2016 in the Fram Strait. Results showed that Chl-a measured using high pressure liquid chromatography (HPLC) was well related (R2 = 0.90) to the collocated particulate absorption line height at 676 nm obtained from the underway spectrophotometry system. This enabled continuous surface Chl-a estimation along the cruise tracks. When used to validate Chl-a operational products as well as to assess the Chl-a algorithms of the aqua moderate resolution imaging spectroradiometer (MODIS-A) and Sentinel-3 Ocean Land Color Imager (OLCI) Level 2 Chl-a operational products, and from OLCI Level 2 products processed with Polymer atmospheric correction algorithm (version 4.1), the underway spectrophotometry based Chl-a data sets proved to be a much more sufficient data source by generating over one order of magnitude more match-ups than those obtained from discrete water samples. Overall, the band ratio (OCI, OC4) Chl-a operational products from MODIS-A and OLCI as well as OLCI C2RCC products showed acceptable results. The OLCI Polymer standard output provided the most reliable Chl-a estimates, and nearly as good results were obtained from the OCI algorithm with Polymer atmospheric correction method. This work confirms the great advantage of the underway spectrophotometry in enlarging in situ Chl-a data sets for the Fram Strait and improving satellite Chl-a validation and Chl-a algorithm assessment over discrete water sample analysis in the laboratory.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...