GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (3)
  • Public Library of Science  (2)
  • Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción  (1)
  • 1
    facet.materialart.
    Unknown
    Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción
    In:  Gayana Botanica, 69 (2). pp. 376-379.
    Publication Date: 2019-01-22
    Description: Pese al enorme número de bacterias que se encuentran normalmente en la columna de agua, se registra por primera vez su presencia sobre oogonios del alga Fucus vesiculosus. En cortes transversales, sin embargo, los oogonios se encontraban libres de epibiosis. Las algas fucoides son fundamentales en ciertos ambientes costeros, mas el impacto microbiano sobre su ciclo de vida y colonización es completamente desconocido.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-16
    Description: Durvillaea antarctica (Fucales, Phaeophyceae) is a large kelp of high ecological and economic significance in the Southern Hemisphere. In natural beds along the central coast of Chile (Pacific Ocean), abnormal growth characterized by evident gall development and discolorations of the fronds/thallus was observed. Analysing these galls by light microscopy and scanning electron microscopy revealed the presence of endophytic eukaryotes showing typical characteristics for phytomyxean parasites. The parasite developed within enlarged cells of the subcortical tissue of the host. Multinucleate plasmodia developed into many, single resting spores. The affiliation of this parasite to the Phytomyxea (Rhizaria) was supported by 18S rDNA data, placing it within the Phagomyxida. Similar microorganisms were already reported once 23 years ago, indicating that these parasites are persistent and widespread in D. antarctica beds for long times. The symptoms caused by this parasite are discussed along with the ecological and economic consequences. Phytomyxean parasites may play an important role in the marine ecosystem, but they remain understudied in this environment. Our results demonstrate for the first time the presence of resting spores in Phagomyxida, an order in which resting spores were thought to be absent making this the first record of a phagomyxean parasite with a complete life cycle so far, challenging the existing taxonomic concepts within the Phytomyxea. The importance of the here described resting spores for the survival and ecology of the phagomyxid parasite will be discussed together with the impact this parasite may have on 'the strongest seaweed of the world', which is an important habitat forming and economic resource from the Southern Hemisphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-26
    Description: Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2016-01-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Saha, Mahasweta; Wiese, Jutta; Weinberger, Florian; Wahl, Martin (2016): Rapid adaptation to controlling new microbial epibionts in the invaded range promotes invasiveness of an exotic seaweed. Journal of Ecology, 104(4), 969-978, https://doi.org/10.1111/1365-2745.12590
    Publication Date: 2023-01-13
    Description: Rapid adaptation to novel biotic interactions and abiotic factors in introduced ranges can be critical to invasion success of both exotic terrestrial and aquatic plants. Seaweeds are extremely successful biological invaders in marine environments. Along with herbivores, foulers − ubiquitous enemies in the marine environment − have the potential to determine the success or failure of invasive seaweeds. However, research on the topic of rapid adaptation of seaweeds to biotic challenges is still in its nascent stages and rapid adaptation of seaweeds to fouling is unexplored. We tested whether the impressive invasion success of the red macroalga Gracilaria vermiculophylla may be enhanced by the rapid adaptation of chemical control (defence) of new bacterial epibionts in the invaded range. The native and invasive G. vermiculophylla populations investigated were equally well defended against currently co-occurring bacterial epibionts isolated from their respective ranges. In contrast, the native populations were weakly defended against bacterial epibionts from the invaded range, whereas the invasive populations were weakly defended against bacterial epibionts from their native range. Apparently during the invasion process, invasive populations have adapted their control capacity to cope with the new epibionts but have lost the capacity to fend off old epibionts. Synthesis. These results provide the first evidence that a change in habitat and, thus, confrontation by new enemies, may trigger rapid defence adaptation of seaweeds, which could be necessary for invasiveness. Such adaptation dynamics as found in the current study could be also applicable to other types of host plant – enemy interaction e.g. plant root – microbe interactions, freshwater plant – fouler interactions in general and for cases of shifting plant – enemy interactions in course of climate change.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wu, Bin; Wiese, Jutta; Labes, Antje; Kramer, Annemarie; Schmaljohann, Rolf; Imhoff, Johannes F (2015): Lindgomycin, an Unusual Antibiotic Polyketide from a Marine Fungus of the Lindgomycetaceae. Marine Drugs, 13(8), 4617-4632, https://doi.org/10.3390/md13084617
    Publication Date: 2023-01-13
    Description: An unusual polyketide with a new carbon skeleton, lindgomycin (1), and the recently described ascosetin (2) were extracted from mycelia and culture broth of different Lindgomycetaceae strains, which were isolated from a sponge of the Kiel Fjord in the Baltic Sea (Germany) and from the Antarctic. Their structures were established by spectroscopic means. In the new polyketide, two distinct domains, a bicyclic hydrocarbon and a tetramic acid, are connected by a bridging carbonyl. The tetramic acid substructure of compound 1 was proved to possess a unique 5-benzylpyrrolidine-2,4-dione unit. The combination of 5-benzylpyrrolidine-2,4-dione of compound 1 in its tetramic acid half and 3-methylbut-3-enoic acid pendant in its decalin half allow the assignment of a new carbon skeleton. The new compound 1 and ascosetin showed antibiotic activities with IC50 value of 5.1 (±0.2) µM and 3.2 (±0.4) µM, respectively, against methicillin-resistant Staphylococcus aureus.
    Type: Dataset
    Format: application/pdf, 49.3 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...