GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-13
    Keywords: File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 292 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-24
    Description: ERA-Interim reanalysis data and data of the Hadley Centre Global Environmental Model version 2 (HadGEM2) are compared with continuous meteorological observations of near-surface wind and temperature carried out for more than 30 years at Neumayer station, situated on the Ekstro¨m Ice Shelf of Antarctica. Significant temperature correlations between Neumayer climate and the climate of both the interior of the Antarctic continent and oceanic regions north of Neumayer are investigated using observational data and model data. Mean sea level pressure fluctuations at Neumayer can be connected to changes in the Southern Annular Mode (SAM). Shortcomings in the ERA-Interim reanalysis data with spurious trends of up to 7 C over 31 years are identified at several places in Antarctica. Furthermore, it is shown that katabatic winds in both the ERA-Interim reanalysis data and in the HadGEM2 climate model are underrepresented in frequency and speed, presumably due to the problems in representing topography in these relatively coarse resolution models. This may be one reason for the positive 2m air temperature bias of 3 C in the models at Neumayer station. The results of this study reemphasize that climatic trends in regions with a low station density can not be assessed solely from model data. Thus, it is absolutely necessary to maintain polar observatories such as Neumayer station to quantify climate change over the Southern Ocean and Antarctica.
    Keywords: Baseline Surface Radiation Network; BSRN; Dronning Maud Land, Antarctica; Georg von Neumayer; GVN; Monitoring station; MONS; Neumayer_based; NEUMAYER III
    Type: Dataset
    Format: 372 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    FINNISH ENVIRONMENT INST
    In:  EPIC3Boreal Environment Research, FINNISH ENVIRONMENT INST, 18(5), pp. 341-358, ISSN: 1239-6095
    Publication Date: 2019-07-17
    Description: The evolution of snow and ice thicknesses and temperature in an Arctic lake was investigated using two models: a high-resolution, time-dependent model (HIGHTSI) and a quasi-steady two-layer model on top of a lake model (FLake). In situ observations and a Numerical Weather Prediction model (HIRLAM) were used for the forcing data. HIRLAM forecasts, after orography correction, were comparable with the in situ data. Both lake-ice models predicted the ice thickness (accuracy 5 cm), surface temperature (accuracy 2–3 °C in winter, better in spring), and ice-breakup date (accuracy better than five days) well. HIGHTSI was better for ice thickness and ice-breakup date, while FLake gave better freezing date. Snow thickness outcome was worse, in particular for the melting season. Surface temperature was highly sensitive to air temperature, stratification and albedo, and the largest errors (positively biased) resulted in strongly stable conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...