GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (3)
  • European Marine Board  (2)
  • Frontiers Research Foundation  (1)
  • Nature Publishing Group (NPG)  (1)
  • 1
    Publication Date: 2020-02-06
    Description: The El Niño/Southern Oscillation (ENSO) is the leading mode of tropical Pacific interannual variability in the present-day climate. Available proxy evidence suggests that ENSO also existed during past climates, for example during the Pliocene extending from about 5.3 million to about 2.6 million years BP. Here we investigate the influences of the Panama Seaway closing and Indonesian Passages narrowing, and also of atmospheric carbon dioxide (CO2) on the tropical Pacific mean climate and annual cycle, and their combined impact on ENSO during the Pliocene. To this end the Kiel Climate Model), a global climate model, is employed to study the influences of the changing geometry and CO2-concentration. We find that ENSO is sensitive to the closing of the Panama Seaway, with ENSO amplitude being reduced by about 15–20 %. The narrowing of the Indonesian Passages enhances ENSO strength but only by about 6 %. ENSO period changes are modest and the spectral ENSO peak stays rather broad. Annual cycle changes are more prominent. An intensification of the annual cycle by about 50 % is simulated in response to the closing of the Panama Seaway, which is largely attributed to the strengthening of meridional wind stress. In comparison to the closing of the Panama Seaway, the narrowing of the Indonesian Passages only drives relatively weak changes in the annual cycle. A robust relationship is found such that ENSO amplitude strengthens when the annual cycle amplitude weakens.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: We report fossil coral records from the Seychelles comprising individual time slices of 14–20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990–2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2–5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere–ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean–atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only provides an incomplete picture.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Orbital forcing influences climate phenomena by changing incoming solar radiation in season and latitude. Here, changes in the El Niño-Southern Oscillation (ENSO)’s impact on the East Asian winter monsoon (EAWM) due to orbital forcing, especially for three selected time periods in each of two interglacial periods, the Eemian (126, 122, 115 ka) and Holocene (9, 6, 0 ka), are investigated. There was a high negative correlation between ENSO and EAWM when the obliquity was low, the processional angle was large, and especially when accompanied by large eccentricity, which corresponds to a weaker monsoon period. The correlation was also high when ENSO variability was high, which interestingly corresponded to lower obliquity and higher-degree precession periods. Therefore, as both lower obliquity and higher-degree precession, such as during 115 ka and 0 ka, cause the EAWM to be weakened through higher winter insolation over Northern hemisphere, and the ENSO to be enhanced through an intensified zonal contrast of the equatorial sea surface temperature, the relationship between the ENSO and EAWM becomes tighter. The opposite case (i.e., during 126 and 9 ka) is also true dynamically. Furthermore, the sensitivity of boreal winter precipitation against sea surface temperature (SST) anomaly over the tropical Pacific, which depends on mean SST, was positively correlated to the strength of the ENSO-EAWM correlation, implying that the warmer mean ocean surface causes the strong response of atmosphere to change in the SST anomaly, thereby enhancing the impact of ENSO on EAWM. Warmer wintertime tropical SST is attributed to higher insolation over the tropics, especially during 115 and 0 ka, while cooler SSTs occurred during 126 and 9 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-04
    Description: The sentence “every second breath you take comes from the Ocean” is commonly used in Ocean Literacy and science communication to highlight the importance of Ocean oxygen. However, despite its widespread use, it is often not phrased correctly. In contrast, awareness about the threat of the global oxygen loss in the Ocean, called deoxygenation, is low, particularly in comparison with other important stressors, such as Ocean acidification or increasing seawater temperatures. Deoxygenation is increasing in the coastal and open Ocean, primarily due to human-induced global warming and nutrient run-off from land, and projections show that the Ocean will continue losing oxygen as global warming continues. The consequences of oxygen loss in the Ocean are extensive and include decreased biodiversity, shifts in species distributions, displacement or reduction in fisheries resources, changes in biogeochemical cycling and mass mortalities. Low oxygen conditions also drive other chemical processes which produce greenhouse gases, toxic compounds and further degrade water quality. Degraded water quality directly affects marine ecosystems, but also indirectly impacts ecosystem services supporting local communities, regional economies and tourism. Although there are still gaps in our knowledge, we know enough to be very concerned about the consequences: the impacts might even be larger than from Ocean acidification or heat waves, and three out of the five global mass extinctions were linked to Ocean deoxygenation. The sense of urgency to improve Ocean health is reflected in the UN Decade of Ocean Science for Sustainable Development and the EU Mission: Restore our Ocean and Waters, and tackling the loss of oxygen in the Ocean is critical to achieving the aims of these two initiatives.
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-29
    Description: K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration Nature Neuroscience 15, 1272 (2012). doi:10.1038/nn.3185 Authors: Julia Schiemann, Falk Schlaudraff, Verena Klose, Markus Bingmer, Susumu Seino, Peter J Magill, Kareem A Zaghloul, Gaby Schneider, Birgit Liss & Jochen Roeper
    Print ISSN: 1097-6256
    Electronic ISSN: 1546-1726
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-21
    Description: EMB Future Science Brief No. 10 highlights the most recent science on Ocean oxygen, including causes, impacts and mitigation strategies of Ocean oxygen loss, and discusses whether “every second breath we take comes from the Ocean”. It closes with key policy, management and research recommendations to address Ocean deoxygenation and communicate more accurately about the role of the Ocean in Earth’s oxygen. The sentence “every second breath you take comes from the Ocean” is commonly used in Ocean Literacy and science communication to highlight the importance of Ocean oxygen. However, despite its widespread use, it is often not phrased correctly. In contrast, there is little awareness about the threat of the global oxygen loss in the Ocean, called deoxygenation, particularly in comparison with other important stressors, such as Ocean acidification or increasing seawater temperatures. Deoxygenation is increasing in the coastal and open Ocean, primarily due to human-induced global warming and nutrient run-off from land, and projections show that the Ocean will continue losing oxygen as global warming continues. The consequences of oxygen loss in the Ocean are extensive and include decreased biodiversity, shifts in species distributions, displacement or reduction in fisheries resources, changes in biogeochemical cycling and mass mortalities. Low oxygen conditions also drive other chemical processes which produce greenhouse gases, toxic compounds and further degrade water quality. The degraded water quality directly affects marine ecosystems, but also indirectly impacts ecosystem services supporting local communities, regional economies and tourism. Although there are still gaps in our knowledge, we know enough to be very concerned about the consequences: the impacts might even be larger than from Ocean acidification or heat waves, and three out of the five global mass extinctions were linked to Ocean deoxygenation. The sense of urgency to improve Ocean health is reflected in the UN Decade of Ocean Science for Sustainable Development (Ocean Decade) and the EU Mission: Restore our Ocean and Waters (Mission Ocean), and tackling the loss of oxygen in the Ocean is critical to achieving the aims of these two initiatives.
    Description: Published
    Description: Refereed
    Keywords: Ocean oxygen ; Deoxygenation
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 84pp.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-08-10
    Description: Ice- and organic-rich deposits of late Pleistocene age, known as Yedoma Ice Complex (IC), are widespread across large permafrost regions in Northeast Siberia. To reconstruct Yedoma IC formation in Central Yakutia, we analyzed the geochemistry, sedimentology, and stratigraphy of thawed and frozen deposits below two thermokarst lakes in different evolutionary stages (a mature alas lake and a initial Yedoma lake) from the Yukechi site in the Lena-Aldan interfluve. We focused on inorganic geochemical characteristics and mineral weathering in two ∼17 m long sediment cores to trace syngenetic permafrost aggradation and degradation over time. Geochemical properties, element ratios, and specific weathering indices reflect varying sedimentation processes and seasonal thaw depths under variable environmental conditions. Deeper thaw during the interstadial Marine Isotope Stage (MIS) 3 enabled increasing mineral weathering and initial thermokarst processes. Sedimentological proxies reflect high transport energy and short transport paths and mainly terrestrial sediment supply. The Yedoma formation resulted from fluvial, alluvial and aeolian processes. Low mean TOC contents in both cores contrast with Yedoma deposits elsewhere. Likely, this is a result of the very low organic matter content of the source material of the Yukechi Yedoma. Pronounced cryostructures and strongly depleted pore water stable isotopes show a perennially frozen state and preserved organic matter for the lower part of the Yedoma lake core, while changing permafrost conditions, conditions promoting weathering, and strong organic matter decomposition are suggested by our proxies for its middle and upper parts. For the alas lake core, less depleted water stable isotopes reflect the influence of recent precipitation, i.e. the infiltration of rain and lake water into the unfrozen ground. The FENG, MIA(R), and ICV weathering indices have proven to be promising proxies for the identification of conditions that promote mineral weathering to different degrees in the stratigraphy of the thawed and frozen Yedoma deposits, for which we assume a rather homogeneous chemical composition of the parent material. Our study highlights that the understanding of environmental conditions during Yedoma formation and degradation processes by specific geochemical proxies is crucial for assessing the potential decomposition and preservation of the frozen and unfrozen Yedoma inventories.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...