GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-11-08
    Description: Marine geophysical surveys employing Seabeam, multi- and single-channel seismic reflection, gravity and magnetic instruments were conducted at two locations along the continental slope of the Peru Trench during the Seaperc cruise of the R/V “Jean Charcot” in July 1986. These areas are centered around 5°30′S and 9°30′S off the coastal towns of Paita and Chimbote respectively. These data indicate that (1) the continental slope off Peru consists of three distinct morpho-structural domains (from west to east are the lower, middle and upper slopes) instead of just two as previously reported; (2) the middle slope has the characteristics of a zone of tectonic collapse at the front of a gently flexured upper slope; (3) the upper half of the lower slope appears to represent the product of mass wasting; (4) thrusting at the foot of the margin produces a continuous morphologic feature representing a deformation front where the products of mass-wasting are overprinted by a compressional tectonic fabric; (5) a change in the tectonic regime from tensional to compressional occurs at the mid-slope-lower slope boundary, the accretionary prism being restricted to the very base of the lower slope in the Paita area. The Andean margin off Peru is an “extensional active margin” or a “collapsing active margin” developing a subordinated accretionary complex induced by massive collapse of the middle slope area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 7 (6). pp. 475-499.
    Publication Date: 2016-06-27
    Description: The Murray fracture has been thought to extend ashore into the Transverse Ranges of California, but a geophysical study shows no evidence of structural continuity between these features. Instead, basement morphology typical of the Murray fracture zone ends where its known magnetic and bathymetric expression dies out. Similarly, east-west Transverse Range structures change direction so that they are parallel to the northwest trend of the coast rather than crossing the continental shelf and slope. The lack of continuity suggests an independent development of the Transverse Ranges since at least mid-Tertiary time along an older structural trend continuous with the Murray fracture zone. Possibly a fundamental lineament in the crust, an extension of the Murray, inactive since at least the mid-Tertiary, provided a convenient trend for development of the Transverse Ranges in response to deformation along the San Andreas fault system. The Murray fracture zone is thought by some authors to be a transform-fault. The transform-fault hypothesis alleviates some difficulties that arise in explaining the origin of the zone by transcurrent faulting but equivalent uncertainties seem to accompany the newer explanation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 160 (1-4). pp. 75-90.
    Publication Date: 2019-05-13
    Description: The imaging of a multichannel seismic record was improved by reprocessing using pre-stack techniques. The reprocessed record shows structures that indicate tectonic erosion and gravity collapse at the front of the Japan Trench margin. Much of the lower slope appears to be underlain by a detached, coherent block of continental crust. The lower slope has failed by mass wasting and the resulting apron of slump debris at the base of the slope has become involved in thrust faulting at the front of the subduction zone. Slumping continues as long as debris is removed from the front of the margin by subduction, and the apron cannot build up sufficiently to stabilize the failing lower slope. Truncated beds at the base of the upper plate indicate subcrustal erosion as well, this probably being the main cause of massive subsidence of the margin. Subsidence was the cause of oversteepening, destabilization and subsequent gravity collapse of the leading edge of the upper plate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 203 (3-4). pp. 303-317.
    Publication Date: 2017-07-28
    Description: Slope failure along the Costa Rica convergent margin commonly results from steepening of the continental slope above underthrust relief on the subducting plate. The 50-km-wide prehistoric Nicoya Slump was a big event that was followed by small slides from its headwall. Estimated maximum wave height above the slide is 27 m. The headwall occurs along a tectonized and unstable zone that extends northwest. An expected great earthquake in the adjacent Nicoya seismic gap could trigger future tsunamigenic landslides along this zone. The central Nicaragua slope, where the 1992 tsunamigenic earthquake occurred, has failed from steepening by tectonic erosion and perhaps subducting relief. The steep middle slope displays several large slide scars, each of which had the potential to generate a 6–7-m-high wave. A relation between the youngest slide and the 1992 earthquake is uncertain. Principal causes of landslides off Middle America were tectonic steepening and elevated fluid pressure. A mid-slope tectonized zone off Costa Rica allowed detachment of a huge slump involving the entire lower slope to the plate boundary. It may pose a hazard during rupture of the Nicoya locked zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 186 (1-2). pp. 83-110.
    Publication Date: 2017-07-28
    Description: The Mediterranean Ridge is a unique accretionary complex, consisting of five key elements: the frontal slope, the upper slope, the crest of the Ridge, the Cleft area, and the Inner Plateau. The IMERSE data show that these correspond roughly to the locus of frontal accretion, of underplating, of a pre-Messinian wedge, of complex faulting and possible strike-slip tectonics, and of a backstop of Hellenic nappes covered by a Messinian forearc basin. The frontal portion of the complex is a post-Messinian accretionary wedge (composed of Messinian evaporites and overlying tightly folded Plio–Quaternary sediments), underlain by pre-Messinian sequences attached to the African Plate. The basal detachment at the front of the wedge occurs at the base of the evaporites. Moving further to the northeast (the upper slope), the basal detachment cuts to deeper levels leading to the development of duplex structures where pre-Messinian units are subcreted beneath the Messinian evaporites. Just behind the subcreted units, the evaporites thin and may be absent on the crest of the Ridge. This region we interpret as the site of a pre-Messinian accretionary wedge: we suggest that following the deposition of thick evaporites in the Messinian, the pre-Messinian accretionary tectonics continued as subsurface accretion (subcretion) beneath the evaporites. Although the crest of the Ridge is largely devoid of evaporites, local deep evaporite basins observed here formed as local closed basins on top of the pre-Messinian wedge. We infer that the Messinian sealevel was at about the level of the Ridge crest, that is 3000 m below present. Allowing for isostatic adjustment to the removal of the water load, this would imply a sealevel drop of at least 2000 m. The Cleft basins mark the northeast limit of the accretionary complex. Thick evaporite deposits to the northeast (beneath the Inner Plateau) may have been deposited in a Messinian forearc basin. The evaporites of the Inner Plateau are underlain by a thin pre-Messinian sequence and by crystalline basement of the Hellenic nappes. This basement forms the backstop to the accretionary complex.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-26
    Description: In the context of the IMERSE project, several crossings of the deformation front of the western Mediterranean Ridge were made in the region of the Sirte Abyssal Plain, the Messina Abyssal Plain and the intervening region. In this paper, we present seismic images and interpretations across the deformation front, with particular emphasis on the role the Messinian evaporites have played in controlling the accretionary tectonics of the thin frontal portion of the wedge. The seismic images show that the basal detachment generally is located at the base of the evaporites. From a consideration of the mechanics of the wedge, for both Coulomb and plastic rheologies, we show that the low wedge taper (c. 2°) requires that the detachment is characterised by extreme fluid overpressuring (within 2% of lithostatic in places) and that the basal yield stress (less than 1 MPa) is lower than that of a wet salt décollement zone. This supports the seismic interpretation that the detachment occurs in overpressured sediments beneath the impermeable evaporites. Lateral variations in the accretionary style can be related to lateral variations in evaporite thickness, the effectiveness of the evaporite as an impermeable seal and to local relief on the subducting plate; these factors control the escape of fluids from beneath the evaporites and hence fluid pressure and basal yield stresses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-07-28
    Description: Seismic velocities obtained from ocean-bottom hydrophone, expanding spread profile and multi-channel seismic data were used to compile a velocity model for the Mediterranean Ridge along a 220-km-long transect extending from the Sirte Abyssal Plain to the Cleft region near the Hellenic Trough. A 200–300-m-thin layer of Plio–Quaternary sediments with velocities of 1800–2200 m s−1 covers the whole Ridge. The Messinian evaporites (4000–4500 m s−1) occur in the southwest as a tectonically thickened layer and in a basin just northeast of the crest of the Ridge. In the intervening region however, the evaporites appear absent and the seismic velocities are generally lower. Arched reflectors, imaged in the depth-migrated section, suggest that the sediments beneath the Ridge crest belong to a Pre-Messinian accretionary wedge. Beneath the Messinian evaporites a northeastward-thinning layer of probable Tertiary sediments shows laterally increasing velocities from 3300 m s−1 to 4600 m s−1. Assuming that the layer thinning is caused by compaction due to increased overburden alone, we have calculated a porosity reduction from 15% to 4% and an associated fluid expulsion of 10 km3 km−1 along the trench axis. This corresponds to c. 60% of the initial fluid volume of an undeformed sediment column from the abyssal plain. The almost impermeable evaporitic cap over these sediments leads to high fluid pressures at the base of the evaporites, likely to make this horizon the basal décollement of the modern accretionary system. A 2.5-km-thick unit of probable Mesozoic carbonates with velocities of 4500–4600 m s−1 is inferred at c. 8 km depth. The top of the oceanic crust occurs at a depth of about 10 km. The results from this study have widespread implications for the understanding of the regional geological history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...