GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-19
    Description: As a result of extensive hydrocarbon exploration, the North Sea hosts several thousand abandoned wells; many believed to be leaking methane. However, how much of this greenhouse gas is emitted into the water column and ultimately reaches the atmosphere is not known. Here, we investigate three abandoned wells at 81-93m water depth in the Norwegian sector of the North Sea, all of which show gas seepage into the bottom water. The isotopic signature of the emanating gas points towards a biogenic origin and hence to gas pockets in the sedimentary overburden above the gas reservoirs that the wells were drilled into. Video-analysis of the seeping gas bubbles and direct gas flow measurements resolved initial bubble sizes ranging between 3.2 and 7.4mm in diameter with a total seabed gas flow between 1 and 19 tons of CH4 per year per well. Estimated total annual seabed emissions from all three wells of ~24 tons are similar to the natural seepage rates at Tommeliten, suggesting that leaky abandoned wells represent a significant source of methane into North Sea bottom waters. However, the bubble-driven direct methane transport into the atmosphere was found to be negligible (〈2%) due to the small bubble sizes and the water depth at which they are released.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Gas release from wells may counteract efforts to mitigate greenhouse gas emissions. • An approach for assessing methane release from marine decommissioned wells. • This gas release largely depends on the presence of shallow gas accumulations. • Methane release from hydrocarbon wells represents a major source in the North Sea. Abstract Hydrocarbon gas emissions from with decommissioned wells are an underreported source of greenhouse gas emissions in oil and gas provinces. The associated emissions may partly counteract efforts to mitigate greenhouse gas emissions from fossil fuel infrastructure. We have developed an approach for assessing methane leakage from marine decommissioned wells based on a combination of existing regional industrial seismic and newly acquired hydroacoustic water column imaging data from the Central North Sea. Here, we present hydroacoustic data which show that 28 out of 43 investigated wells release gas from the seafloor into the water column. This gas release largely depends on the presence of shallow gas accumulations and their distance to the wells. The released gas is likely primarily biogenic methane from shallow sources. In the upper 1,000 m below the seabed, gas migration is likely focused along drilling-induced fractures around the borehole or through non-sealing barriers. Combining available direct measurements for methane release from marine decommissioned wells with our leakage analysis suggests that gas release from investigated decommissioned hydrocarbon wells is a major source of methane in the North Sea (0.9-3.7 [95% confidence interval = 0.7-4.2] kt yr−1 of CH4 for 1,792 wells in the UK sector of the Central North Sea). This means hydrocarbon gas emissions associated with marine hydrocarbon wells are not significant for the global greenhouse gas budget, but have to be considered when compiling regional methane budgets.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Highlights • CO2 gas bubbles are completely dissolved within 2 m above the seabed. • CO2 is not emitted into the atmosphere but retained in the North Sea. • Dissolved CO2 is rapidly dispersed by tidal currents in the North Sea. • Harmful effects on benthic biota occur in the direct vicinity of the leak. • Monitoring has to be performed at the seabed and close to the leak. Abstract Existing wells pose a risk for the loss of carbon dioxide (CO2) from storage sites, which might compromise the suitability of carbon dioxide removal (CDR) and carbon capture and storage (CCS) technologies as climate change mitigation options. Here, we show results of a controlled CO2 release experiment at the Sleipner CO2 storage site and numerical simulations that evaluate the detectability and environmental consequences of a well leaking CO2 into the Central North Sea (CNS). Our field measurements and numerical results demonstrate that the detectability and impact of a leakage of 〈55 t yr−1 of CO2 would be limited to bottom waters and a small area around the leak, due to rapid CO2 bubble dissolution in seawater within the lower 2 m of the water column and quick dispersion of the dissolved CO2 plume by strong tidal currents. As such, the consequences of a single well leaking CO2 are found to be insignificant in terms of storage performance. Only prolonged leakage along numerous wells might compromise long-term CO2 storage and may adversely affect the local marine ecosystem. Since many abandoned wells leak natural gas into the marine environment, hydrocarbon provinces with a high density of wells may not always be the most suitable areas for CO2 storage.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...