GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
Document type
Publisher
Years
  • 1
    Publication Date: 2023-02-08
    Description: Highlights • Recently acquired high-resolution seismic data and existing low-resolution industry data are presented. • Two large concentrated hydrate deposits are identified beneath Glendhu and Honeycomb ridges. • A novel method involving analysis of seismic velocity and reflectivity is used to obtain estimates of hydrate saturations. • Hydrate saturations peaks of 〉80% are estimated locally. • The main driving mechanism for hydrate accumulations is inferred to be along-strata gas migration. Abstract In the southern Hikurangi subduction margin, widespread gas hydrate accumulations are inferred based on the presence of bottom simulating reflections and recovered gas hydrate samples, mainly associated with thrust ridges. We present a detailed analysis of high- and medium-resolution seismic reflection data across Glendhu and Honeycomb ridges, two elongated four-way closure systems at the toe of the deformation wedge. High-amplitude reflections within the gas hydrate stability zone, coincident with high seismic velocities, suggest the presence of highly concentrated gas hydrate accumulations in the core regions of the anticlinal ridges. A novel method involving combined seismic velocity and reflectivity analysis and rock physics modelling is used to estimate hydrate saturations in localised areas. The effective medium model consistently predicts gas hydrate saturations of ~30% of the pore space at Glendhu Ridge and 〉60% at Honeycomb Ridge, whereas the empirical three-phases weighted equation likely underestimates the amount of gas hydrate present. We note that our estimates are dependent on the vertical resolution of the seismic data (5–14 m), and that the existence of thin layers hosting gas hydrate at higher concentrations is likely based on observations made elsewhere in similar depositional environments. A comparison between the two ridges provides insights into the evolution of thrust related anticlines at the toe of the accretionary wedge. We propose that the main driving mechanism for concentrated hydrate accumulation in the study area is along-strata gas migration. The vertical extent of these accumulations is a function of the steepness of the strata crossing the base of gas hydrate stability, and of the volume of sediments from which fluid flows into each structure. According to our interpretation, older structures situated further landward ofthe deformation front are more likely to host more extensive concentrated hydrate deposits than younger ridges situated at the deformation front and characterised by more gentle folding. The method introduced in this work is useful to retrieve quantitative estimates of gas hydrate saturations based on multi-channel seismic data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Highlights • Gas hydrate systems modelling reproduces concentrated gas hydrates indicated by high amplitude seismic reflections. • Spatially variable rates in microbial gas generation beneath the hydrate stability zone drive gas hydrate formation. • Gas migration through faults and up-dip migration through permeable layers control gas hydrate distribution within ridges. • Gas hydrate accumulation is enhanced by gas recycling, leading to the formation of concentrated gas hydrates in 〈2 Ma. Abstract Gas hydrates are widespread along convergent margins, but their distribution is highly variable. This variability has been attributed to a range of factors, such as the source of gas and the occurrence of permeable faults and porous or fractured reservoirs. We test these concepts on the Hikurangi Margin, where gas hydrate occurrences of variable character are well-documented by seismic reflection datasets and scientific drilling. We use 3D gas hydrate systems modelling to reconstruct processes of gas generation, migration and gas hydrate formation through time in two thrust ridges at the deformation front (Glendhu and Honeycomb ridges). We compare the results of scenarios using different fault and rock properties with indications for concentrated gas hydrates in reflection seismic data. Gas hydrate distributions are best reproduced by models predicting focussed gas migration through thrust faults and permeable strata. The gas is predominantly sourced from microbial generation beneath the gas hydrate stability zone (HSZ) in sedimentary troughs adjacent to the ridges and migrates up-dip as free gas. During progressive ridge deformation, gas generation shifts to the landward side of the ridges, where strata are rapidly buried, while erosion occurs at the crest of the ridges. A prominent back-thrust in the structurally more mature Glendhu Ridge diverts migrating gas into the HSZ and leads to preferential gas hydrate formation in the landward side of the ridge. Recycling of gas at the base of the HSZ during the past 2 Myrs led to an enrichment of gas hydrates, first in the center of the anticlines and then progressively more in the landward limbs. We propose that this process of diverting gas migration into the HSZ during thrust ridge formation is a common feature not only at the southern Hikurangi Margin, but in many convergent margins with high sedimentation rates and a thick accretionary wedge.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...