GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • 1
    Publication Date: 2019-09-23
    Description: The GLOBEC Germany program (2002–2007) had the ambitious goal to resolve the processes impacting the recruitment dynamics of Baltic sprat (Sprattus sprattus L.) by examining various factors affecting early life history stages. At the start of the research program, a number of general recruitment hypotheses were formulated, i.e. focusing on (1) predation, (2) food availability, (3) physical parameters, (4) the impact of current systems, and finally (5) the importance of top-down vs bottom-up effects. The present study synthesizes the results of field sampling (2002 and 2003), laboratory experiments, and modeling studies to re-evaluate these hypotheses for the Baltic sprat stock. Recruitment success was quite different in the 2 years investigated. Despite a lower spawning stock biomass in 2003, the total number of recruits was almost 2-fold higher that year compared to 2002. The higher recruitment success in 2003 could be attributed to enhanced survival success during the post-larval/juvenile stage, a life phase that appears to be critical for recruitment dynamics. In the state of the Baltic ecosystem during the period of investigation, we consider bottom-up control (e.g. temperature, prey abundance) to be more important than top-down control (predation mortality). This ranking in importance does not vary seasonally. Prevailing water circulation patterns and the transport dynamics of larval cohorts have a strong influence on sprat recruitment success. Pronounced transport to coastal areas is detrimental for year-class strength particularly at high sprat stock sizes. A suggested mechanism is density-dependant regulation of survival via intra- and inter-specific competition for prey in coastal areas. A documented change in larval vertical migration behavior between the early 1990s and early 2000s increased the transport potential to the coast, strengthening the coupling between inter-annual differences in the magnitude and direction of wind-driven surface currents and year-to-year changes in reproductive success. However, due to the strong linkages and feed-back loops in the Baltic Sea food web, the most robust projections of the future strength of the Baltic sprat stock will need to take into account climate-driven changes in both abiotic (e.g., drift trajectories) and biotic (trophodynamic) factors. Although our understanding of processes affecting pre-recruit (larval) growth and survival has been advanced by the integrated research conducted within the GLOBEC Germany program, key mechanisms potentially affecting life stages outside of the spawning basins remain to be explored including the dynamics of coastal habitats of juveniles and the feeding and overwintering grounds of adults. Highlights: ► Food limitation may contribute to the formation of seasonal ‘windows of survival’. ► Change in larval migration exalted the importance of transport. ► Temperature is the most important physical factor influencing sprat recruitment. ► Bottom-up control is more important than top-down control. ► Projected Baltic water temperature increase suggests higher sprat recruitment potential.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-12
    Description: Transport of Baltic sprat Sprattus sprattus L. larvae spawned on different spawning grounds was investigated by detailed drift model simulations for the years 1979–2002. Modeling approaches with and without diurnal vertical migration were applied. We used recently collected data on spawning location, vertical distribution and the timing of spawning as input to a particle tracking model. Results of this modeling study enabled the identification of potential nursery grounds for sprat originating from different spawning grounds. On average, westerly winds are prevailing over the Baltic Sea. This leads to on average higher abundance of juvenile sprat along the southern and the eastern coast lines of the Baltic. The horizontal distribution of simulated larval or 0-group sprat is consistent with the observed distribution of 0-group sprat obtained from the hydroacoustic field surveys. In addition, this analysis identifies the potential for advective mixing between juveniles originating from different spawning sites or from the same spawning site throughout the spawning season. High spatial overlap was found between Arkona- and Bornholm Basin larvae hatched at the beginning of the spawning season. Mixing probability of sprat juveniles between Arkona- and Gotland Basin as well as between Bornholm- and Gotland Basin were on relatively low levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...