GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
Document type
Publisher
Years
  • 1
    Publication Date: 2020-08-05
    Description: Gulf of Mexico cold seeps characterized by variable compositions and magnitudes of hydrocarbon seepage were sampled in order to investigate the effects of natural oils, methane, and non-methane hydrocarbons on microbial activity, diversity, and distribution in seafloor sediments. Though some sediments were characterized by relatively high quantities of oil, which may be toxic to some microorganisms, high rates of sulfate reduction (SR, 27.9714.7 mmol m2 d1), anaerobic oxidation of methane (AOM, 16.276.7 mmol m2 d1), and acetate oxidation (2.7470.76 mmol m2 d1) were observed in radiotracer measurements. In many instances, the SR rate was higher than the AOM rate, indicating that non-methane hydrocarbons fueled SR. Analysis of 16S rRNA gene clone libraries revealed phylogenetically diverse communities that were dominated by phylotypes of sulfate-reducing bacteria (SRB) and anaerobic methanotrophs of the ANME-1 and ANME-2 varieties. Another group of archaea form a Gulf of Mexico-specific clade (GOM ARC2) that may be important in brine-influenced, oil-impacted sediments from deeper water. Additionally, species grouping within the uncultivated Deltaproteobacteria clades SEEP-SRB3 and -SRB4, as well as relatives of Desulfobacterium anilini, were observed in relatively higher abundance in the oil-impacted sediments, suggesting that these groups of SRB may be involved in or influenced by degradation of higher hydrocarbons or petroleum byproducts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Highlights • Fermentation, methanogenesis and methanotrophy prevail at the As-contaminated site. • Reducing aquifer consists of gray sediment and is dominated by Fe(III) (oxyhydr)oxides and As(III). • Less reducing aquifer consists of yellow-brown sediment and is dominated by goethite and As(V). • Anaerobic CH4 oxidation likely supports carbonate mineral formation. • Methanotrophic Fe(III)-reducer Ca. Methanoperedens coincides with As and Fe peaks in sediments. High arsenic (As) concentrations in groundwater are a worldwide problem threatening the health of millions of people. Microbial processes are central in the (trans)formation of the As-bearing ferric and ferrous minerals, and thus regulate dissolved As levels in many aquifers. Mineralogy, microbiology and dissolved As levels can vary sharply within aquifers, making high-resolution measurements particularly valuable in understanding the linkages between them. We conducted a high spatial resolution geomicrobiological study in combination with analysis of sediment chemistry and mineralogy in an alluvial aquifer system affected by geogenic As in the Red River delta in Vietnam. Microbial community analysis revealed a dominance of fermenters, methanogens and methanotrophs whereas sediment mineralogy along a 46 m deep core showed a diversity of Fe minerals including poorly crystalline Fe (II/III) and Fe(III) (oxyhydr)oxides such as goethite, hematite, and magnetite, but also the presence of Fe(II)-bearing carbonates and sulfides which likely formed as a result of microbially driven organic carbon (OC) degradation. A potential important role of methane (CH4) as electron donor for reductive Fe mineral (trans)formation was supported by the high abundance of Candidatus Methanoperedens, a known Fe(III)-reducing methanotroph. Overall, these results imply that OC turnover including fermentation, methanogenesis and CH4 oxidation are important mechanisms leading to Fe mineral (trans)formation, dissolution and precipitation, and thus indirectly affecting As mobility by changing the Fe-mineral inventory.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...