GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (3)
  • 1
    Publication Date: 2019-09-23
    Description: Deep crustal constraint is often carried out using deterministic inverse methods, sometimes using seismic refraction, gravity and electromagnetic datasets in a complementary or "joint" scheme. With increasingly powerful parallel computer systems it is now possible to apply joint inversion schemes to derive an optimum model from diverse input data. These methods are highly effective where the uncertainty in the system is small. However, given the complex nature of these schemes it is often difficult to discern the uniqueness of the output model given the noise in the data, and the application of necessary regularization and weighting in the inversion process means that the extent of user prejudice pertaining to the final result may be unclear. We can rigorously address the subject of uncertainty using standard statistical tools but these methods also become less feasible if the prior model space is large or the forward simulations are computationally expensive. We present a simple Monte Carlo scheme to screen model space in a fully joint fashion, in which we replace the forward simulation with a fast and uncertainty-calibrated mathematical function, or emulator. This emulator is used as a proxy to run the very large number of models necessary to fully explore the plausible model space. We develop the method using a simple synthetic dataset then demonstrate its use on a joint data set comprising first-arrival seismic refraction. MT and scalar gravity data over a diapiric salt body. This study demonstrates both the value of a forward Monte Carlo approach (as distinct from a search-based or conventional inverse approach) in incorporating all kinds of uncertainty in the modelling process, exploring the entire model space, and shows the potential value of applying emulator technology throughout geophysics. Though the target here is relatively shallow, the methodology can be readily extended to address the whole crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Computers & Geosciences, 36 (5). pp. 680-686.
    Publication Date: 2017-12-11
    Description: We present an approach to calculate scalar and tensor gravity utilizing the massively parallel architecture of consumer graphics cards. Our parametrization is based on rectilinear blocks with constant density within each blocks. This type of parametrization is well suited for inversion of gravity data or joint inversion with other datasets, but requires the calculation of a large number of model blocks for complex geometries. For models exceeding 10,000 cells we achieve an acceleration of a factor of 40 for scalar data and 30 for tensor data compared to a single thread on the CPU. This significant acceleration allows fast computation of large models exceeding 106 model parameters and thousands of measurement sites.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Breakup of the North Atlantic during the early tertiary was accompanied by widespread and massive magmatism, resulting in the coverage of large areas of the North Atlantic with flood basalts. These flood basalts hamper seismic investigations of underlying sequences and thus the understanding of the rifting, subsidence and evolution of the margin which, in turn, increases the risk for hydrocarbon exploration. In this paper we present a methodology for the simultaneous joint inversion of diverse geophysical datasets, i.e. free air gravity and magnetotelluric soundings (MT) using seismic a priori constraints. The attraction of the joint inversion approach is that different geophysical measurements are sensitive to different properties of the sub-surface, so through joint inversion we significantly reduce the null space and produce a single model that fits all datasets within a predefined tolerance. Using sensitivity analysis of synthetic data, we show how each data set contains complementary important information of the supra and sub-basalt structure. While separate inversions of individual datasets fail to image through the basalt layer, our joint inversion approach leads to a much improved sub-basalt structure. Application of the joint inversion algorithm to satellite gravity data and MT data acquired on the FLARE10 seismic line south west of Faroe islands supports the existence of a 1 km to 2 km thick low velocity region that might be indicative of the existence of a sedimentary basin underneath the basalt layer. Though in this paper we demonstrate the use of joint inversion on a sub-basalt target, we believe it has wider applicability to other areas where conventional seismic imaging fails.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...