GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 22 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-26
    Description: Highlights: • GEOTRACES releases its first integrated and quality controlled Intermediate Data Product 2014 (IDP2014). • The IDP2014 digital data are available at http://www.bodc.ac.uk/geotraces/data/idp2014/ in 4 different formats. • The eGEOTRACES Electronic Atlas at http://egeotraces.org/ provides 329 section plots and 90 animated 3D tracer scenes. • The new 3D scenes provide geographical and bathymetric context crucial for tracer assessment and interpretation. Abstract: The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Highlights • Novel approach to constrain past export production using Ba isotopes. • Ba isotopes improve reliability of the Ba accumulation productivity proxy. • Higher productivity during PETM recovery contributed to rapid carbon sequestration. Abstract The Paleocene–Eocene thermal maximum (PETM; ∼56 Ma) was a transient global warming event associated with a huge perturbation to the global carbon cycle. Changes in marine biological productivity may have contributed to the rapid recovery from this climate change event, by driving the burial of inorganic and organic carbon. Disagreement between proxy reconstructions, however, makes the response of biological productivity to climatic changes experienced during the PETM uncertain. Accumulation of non-detrital barium (Ba) in marine sediments is a commonly used proxy for export production. This proxy however can be compromised by artifacts resulting from dilution and changes in barite preservation, issues that have been debated for its application to sediments deposited during the PETM. Here we present a new approach to address these limitations, by combining non-detrital Ba accumulation with Ba isotope data for marine PETM sediments. Observed positive correlation between these variables is consistent with their control by local changes in export production. These results help resolve previous discrepancies between productivity reconstructions, and indicate export production at sites in the Southern Ocean and South Atlantic decreased or remained unchanged following the PETM onset, followed by an increase to maximum values in the PETM recovery period. This increase in export production coincides with elevated carbonate accumulation rates, representing an important mode of carbon sequestration. These new constraints therefore support the idea that increased production and export of calcifying nannoplankton, perhaps driven by changes in ocean stratification and/or terrestrial runoff, played an important role in rapid recovery from the PETM. This work also demonstrates the utility of sedimentary Ba isotope compositions for understanding past changes in the marine carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 473 . pp. 269-278.
    Publication Date: 2022-01-19
    Description: Barium has been used as a biogeochemical tracer for alkalinity, productivity, and riverine inputs in the ocean, but its oceanic cycle remains poorly constrained. Barium stable isotope measurements may improve the use of Ba as a tracer and better constrain the cycling of Ba, but data are only available in limited regions of the oceans. In this study, we present dissolved seawater Ba isotopic compositions in a sample collection spanning the North Atlantic, South Atlantic, North Pacific and Southern Oceans. Compiled global upper-ocean [Ba] data show a relatively constant [Ba] (35–45nM) in the near-surface waters throughout the global ocean, with the exception of areas near river inputs or strong upwelling. The relatively uniform distribution of [Ba] in the upper ocean seawater indicates that Ba removal is slow relative to supply and mixing, and implies that near-surface Ba isotope values are controlled by basin-scale balances rather than by regional or short-term processes. Seawater Ba isotopic compositions show a large variation of δ138/134Bavalues ranging from 0.24 to 0.65�, and a tight relationship with [Ba]. This global relationship can be simply modelledassuming a primary deep Southern Ocean source for Ba to yield a maximum isotope fractionation of α=1.00058 ±0.00010(α=138/134Baseawater/138/134Baparticle). This suggested isotope fractionation during Ba removal from seawater is larger than implied by laboratory measurement during barite formation, suggesting additional fractionating phases or a two-stage fractionation process. Riverine input from the Rio de la Plata to the South Atlantic has a signature of δ138/134Ba=−0.06–0.11‰, which is too light to explain the heavy values (〉0.58‰) observed in the surface open ocean. Globally, the Ba isotope composition of the upper ocean waters is correlated with the fraction of Ba utilization at the basin scale (which varies from 〈15 to 70% at sites studied here). In the deep Atlantic Ocean, distinct δ138/134Basignals in the northern-sourced (≈0.45‰) and the southern-sourced water (≈0.25‰) trace mixing and allow identification of non-conservative behaviourof Ba, reflecting additional inputs or sinks of Ba during transport (most likely addition from sediment or hydrothermal). Ba isotopes may be useful to trace such inputs in the present and past ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-08-04
    Description: We report on a multidisciplinary study of cold seeps explored in the Central Nile deep-sea fan of the Egyptian margin. Our approach combines in situ seafloor observation, geophysics, sedimentological data, measurement of bottom-water methane anomalies, pore-water and sediment geochemistry, and 230Th/U dating of authigenic carbonates. Two areas were investigated, which correspond to different sedimentary provinces. The lower slope, at ∼ 2100 m water depth, indicates deformation of sediments by gravitational processes, exhibiting slope-parallel elongated ridges and seafloor depressions. In contrast, the middle slope, at ∼ 1650 m water depth, exhibits a series of debris-flow deposits not remobilized by post-depositional gravity processes. Significant differences exist between fluid-escape structures from the two studied areas. At the lower slope, methane anomalies were detected in bottom-waters above the depressions, whereas the adjacent ridges show a frequent coverage of fractured carbonate pavements associated with chemosynthetic vent communities. Carbonate U/Th age dates (∼ 8 kyr BP), pore-water sulphate and solid phase sediment data suggest that seepage activity at those carbonate ridges has decreased over the recent past. In contrast, large (∼ 1 km2) carbonate-paved areas were discovered in the middle slope, with U/Th isotope evidence for ongoing carbonate precipitation during the Late Holocene (since ∼ 5 kyr BP at least). Our results suggest that fluid venting is closely related to sediment deformation in the Central Nile margin. It is proposed that slope instability leads to focused fluid flow in the lower slope and exposure of ‘fossil’ carbonate ridges, whereas pervasive diffuse flow prevails at the unfailed middle slope.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Continental margin sediments have been identified as the dominant sink in the marine budget of cadmium (Cd). The isotopic composition of this important output flux is, however, unknown. Here we present, with measurements on the Argentine continental margin, the first observational constraints on the isotopic composition of Cd in modern marine oxic and sub-oxic sediments. We identify two main removal mechanisms of Cd; in organic material, and by sulfide formation. Surface margin sediments (0–0.5 cm), with dissolved O2 below detection from ∼0.5 cm, are isotopically lighter than overlying oxygenated waters. A mass balance for these surface sediments indicates that Cd is present dominantly as organically-bound particulate Cd. In sub-surface sediments, Cd concentrations increase in the zone of nitrate reduction, and attain similar isotopic compositions as the water that overlies the sediment (i.e. ∼0.35‰ in deep waters). These observations are consistent with a downward diffusive flux of seawater Cd and redox-driven quantitative removal of that Cd during sulfide precipitation. In combination, these two routes of Cd removal lead to burial of isotopically light organic Cd in margin sub-oxic sediments that enables the global isotopic Cd budget to be balanced.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-10
    Description: Trace metals (TMs) manganese (Mn), cobalt (Co), and aluminium (Al) have important geochemical and biological roles in the ocean. Here, we present full depth profiles of dissolved (d) and particulate Al, Mn, and Co along the latitude of 40 °S in the South Atlantic Ocean from the GEOTRACES GA10 cruises that operated in austral spring 2010 and summer 2011. The region is characterized by enhanced primary productivity and forms a key transition zone between the Southern Ocean and South Atlantic Subtropical Gyre. The mean concentrations of dAl, dCo, and dMn (±standard deviation) were 3.36 ± 2.65 nmol kg−1, 35.3 ± 17.6 pmol kg−1, and 0.624 ± 1.08 nmol kg−1, respectively. Their distributions in surface waters were determined by external sources and complex internal biogeochemical processes. Specifically, surface ocean dCo was controlled by the interplay between phytoplankton uptake, remineralization and external inputs; dMn was likely determined by the formation and photoreduction of Mn-oxides; and dAl was supplied by atmospheric deposition and removed by scavenging onto particles. Fluvial and sedimentary inputs near the Rio de La Plata estuary and benthic sources from the Agulhas Bank resulted in elevated dTM concentrations in near-shore surface waters. These externally sourced dTMs were effectively delivered to the open ocean by offshore diffusion and/or advection, and potentially facilitated enhanced primary productivity along the transect. The distributions of dTMs at depth were predominantly controlled by the mixing of North Atlantic Deep Water (NADW) and waters of Antarctic origin (e.g., Upper Circumpolar Water (UCDW) and Antarctic Bottom Water (AABW)). The calculated endmember concentrations of dAl and dCo in NADW showed minor decreases in the SASTG following north–south transport, suggesting removal rates of 0.064 nM/year and 0.035–0.075 pM/year, respectively. The endmember concentration of dCo in AABW was maintained at ∼30 pmol kg−1 without evidence for scavenging removal in the Southern Ocean and SASTG (time frame 〉400 years). The concentrations of dMn in NADW and AABW were between 0.1 and 0.16 nmol kg−1, and any elevated dMn concentrations were ascribed to local external inputs (e.g., from sediments in the Argentine Basin and hydrothermal activity near the Mid-Atlantic Ridge). Hence, four controlling factors (sources, internal cycling, water mass mixing and time) need to be considered when assessing TM distributions in the global ocean, even for TMs that are vulnerable to scavenging removal processes. Because the deep waters formed in high latitude oceans are crucial components of the global thermohaline overturning system, any processes (e.g., glacier melting, upwelling and sinking, and biological activity) that impact the preformed dTM concentrations in high latitude oceans will determine the downstream dTM distributions. Therefore, the sources and sinks of TMs and associated biological activity in high latitude oceans could engender basin to global scale impacts on seawater distributions of Al, Co, and Mn and their stoichiometric relationships with macronutrients, and the global biogeochemical cycles of these scavenged-type TMs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 493 (2018): 210-223, doi:10.1016/j.chemgeo.2018.05.040.
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, OCE-1243377, and OCE-1546580. Financial support was also provided by the UK Natural Environment Research Council (NERC), the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas ; IDP2017
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 177 (2015): 1-8, doi:10.1016/j.marchem.2015.04.005.
    Description: The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, and OCE-1243377. Financial support was also provided by the UK Natural Environment Research Council, the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...