GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Highlights • Large seafloor depressions with diameters of up 10 km across have been mapped on the southern Chatham Rise, New Zealand. • Seismic reflection data show scarce indications for vertical fluid flow but no clear link between fluid flow and depressions. • Methane gas or methane hydrates appear to be absent on the southern Chatham Rise. • Seismic evidence suggests that vertical fluid flow was likely fuelled by polygonal faulting and silica diagenesis • The depressions are the results of erosion and sediment drift deposition of bottom currents associated with the Subtropical Front. Abstract Several giant seafloor depressions were investigated on the Chatham Rise offshore New Zealand using mainly bathymetric and seismic data, supplemented by sediment cores and reported porewater geochemistry data. The depressions have diameters of up to 11 km and occur on the southern flank of the Chatham Rise in water depths between 600 and 900 m, i.e. roughly underneath the location of the strongest thermal gradients of the Subtropical Front (STF) and characterized by eastward flowing currents. With up to 150 m of relief the depressions cut into post-Miocene deposits. Some of the depressions are partially filled with drift deposits that have similar seismic characteristics as the surrounding sediments and consist of alternations of silty muds and silts. Seismic profiles also show completely filled depressions that no longer have a bathymetric expression. Despite several pipe structures indicating vertical fluid flow, neither active fluid seepage nor indications for past fluid seepage are present at the seafloor of the Chatham Rise. Also, both pore water geochemistry and geophysical data do not show indications for an existing or past gas hydrate system in the area. Instead, seismic data suggest widespread polygonal faulting and the presence of silica diagenetic fronts. The release of mineral-bound water during silica diagenesis or fluid expulsion during sediment compaction can explain the presence of vertical fluid flow features but not the giant depressions themselves. Instead, the depressions are interpreted as the result of scouring by strong bottom currents for which fluid venting may have created the nucleation points.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-19
    Description: Highlights: • We present the first hyperspectral image data from the deep seafloor. • The data were acquired with a new UHI in 4200 m water depth. • Supervised classification is able to detect manganese nodules and fauna. • The UHI is a promising tool for high-resolution seafloor exploration and monitoring. Abstract: Hyperspectral seafloor surveys using airborne or spaceborne sensors are generally limited to shallow coastal areas, due to the requirement for target illumination by sunlight. Deeper marine environments devoid of sunlight cannot be imaged by conventional hyperspectral imagers. Instead, a close-range, sunlight-independent hyperspectral survey approach is required. In this study, we present the first hyperspectral image data from the deep seafloor. The data were acquired in approximately 4200 m water depth using a new Underwater Hyperspectral Imager (UHI) mounted on a remotely operated vehicle (ROV). UHI data were recorded for 112 spectral bands between 378 nm and 805 nm, with a high spectral (4 nm) and spatial resolution (1 mm per image pixel). The study area was located in a manganese nodule field in the Peru Basin (SE Pacific), close to the DISCOL (DISturbance and reCOLonization) experimental area. To test whether underwater hyperspectral imaging can be used for detection and mapping of mineral deposits in potential deep-sea mining areas, we compared two supervised classification methods, the Support Vector Machine (SVM) and the Spectral Angle Mapper (SAM). The results show that SVM is superior to SAM and is able to accurately detect nodule surfaces. The UHI therefore represents a promising tool for high-resolution seafloor exploration and characterisation prior to resource exploitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Highlights: • The Giant Gjallar Vent is still active in terms of fluid migration and faulting. • The Base Pleistocene Unconformity acts as a seal to upward fluid migration. • Seal bypass in at least one location leads to a new phase of fluid venting. The Giant Gjallar Vent (GGV), located in the Vøring Basin off mid-Norway, is one of the largest (~ 5 × 3 km) vent systems in the North Atlantic. The vent represents a reactivated former hydrothermal system that formed at about 56 Ma. It is fed by two pipes of 440 m and 480 m diameter that extend from the Lower Eocene section up to the Base Pleistocene Unconformity (BPU). Previous studies based on 3D seismic data differ in their interpretations of the present activity of the GGV, describing the system as buried and as reactivated in the Upper Pliocene. We present a new interpretation of the GGV’s reactivation, using high-resolution 2D seismic and Parasound data. Despite the absence of geochemical and hydroacoustic indications for fluid escape into the water column, the GGV appears to be active because of various seismic anomalies which we interpret to indicate the presence of free gas in the subsurface. The anomalies are confined to the Kai Formation beneath the BPU and the overlying Naust Formation, which are interpreted to act as a seal to upward fluid migration. The seal is breached by focused fluid migration at one location where an up to 100 m wide chimney-like anomaly extends from the BPU up to the seafloor. We propose that further overpressure build-up in response to sediment loading and continued gas ascent beneath the BPU will eventually lead to large-scale seal bypass, starting a new phase of venting at the GGV.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...