GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Marine Systems, 6 (1-2). pp. 67-75.
    Publication Date: 2018-08-08
    Description: It is well known that spatial scales of oceanic eddies are smaller than scales of atmospheric eddies. Since the spectral distribution of kinetic energy of atmospheric eddies may influence the properties of wind driven oceanic eddies, an excellent resolution of small scale variability of wind fields used as input fields of coupled models of atmosphere and ocean is necessary. Analysis of spatial scales of atmospheric fields is done in terms of spectral energy densities. These are determined in two different ways: directly from objectively analysed fields or by using spatial correlation functions of direct observations averaged for 20 km × 20 km boxes. In the spectral range of wavelengths of less than 1000 km spectral energy densities of analysed fields have lost about 15 to 50% of the variance compared to direct observations. A considerable part of this loss of the variance depends on smoothing done by interpolation schemes themselves. Concerning problems of air-sea interaction care should be taken also to avoid that systematic errors of analysed wind fields lead to systematic errors in turbulent exchange. It is shown that high observed wind speeds are considerably underestimated in analysed fields of numerical models of weather prediction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Physics and Chemistry of The Earth Part B-Hydrology Oceans and Atmosphere, 26 (5-6). pp. 437-442.
    Publication Date: 2017-01-02
    Description: Precipitation plays an important role in the hydrological cycle. But to date, nearly no in-situ precipitation measurements are available over the Baltic Sea. This paper presents first results of rain measurements made by the Institut für Meereskunde at the University of Kiel over a period of two years (1997–1998). A simple interpolation method using autocorrelation functions was used to get a first insight of the spatial distribution in precipitation over the Baltic Proper.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...