GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Based on proxy records from western Black Sea cores, we provide a comprehensive study of climate change during the last glacial maximum and late-glacial period in the Black Sea region. For the first time we present a record of relative changes in precipitation for NW Anatolia based on variations in the terrigenous supply expressed as detrital carbonate concentration. The good correspondence between reconstructed rainfall intensity in NW Anatolia and past western Mediterranean sea surface temperatures (SSTs) implies that during the glacial period the precipitation variability was controlled, like today, by Mediterranean cyclonic disturbances. Periods of reduced precipitation correlate well with low SSTs in the Mediterranean related to Heinrich events H1 and H2. Stable oxygen isotopes and lithological and mineralogical data point to a significant modification in the dominant freshwater/sediment source concomitant to the meltwater inflow after 16.4 cal ka BP. This change implies intensification of the northern sediment source and, with other records from the Mediterranean region, consistently suggests a reorganization of the atmospheric circulation pattern affecting the hydrology of the European continent. The early deglacial northward retreat of both atmospheric and oceanic polar fronts was responsible for the warming in the Mediterranean region, leading simultaneously to more humid conditions in central and northern Europe.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: The Saalian was one of the largest glaciations during the Quaternary with an ice sheet extending considerably wider into the Eurasian continent than during other glacials. Orbital variations caused the ice sheet to switch between growing and shrinking. The partial retreat of the ice sheet and meltwater discharge resulted in global sea-level rise and increased lake levels of inland seas with broader environmental implications. During Marine Isotope Stage 6 (MIS 6), meltwater entered the formerly enclosed Black Sea at least twice as documented in a δ¹⁸O record from Anatolian speleothems. Here we present a sedimentary record from the Black Sea “Lake” covering MIS 6 and provide evidence for three meltwater periods coinciding with insolation maxima (BSWP-6-1: 180-167 ka BP, BSWP-6-2: 160-145 ka BP, BSWP-II: 133-130 ka BP). While δ¹⁸Oostracods and Sr/Caostracods point to pronounced meltwater supply and decreasing salinity, ⁸⁷Sr/⁸⁶Srostracods shed light on meltwater sources and pathways. During all three periods, meltwater drained most likely via the Dnieper and Volga into the Black and Caspian Seas and connected both basins. Relatively low ⁸⁷Sr/⁸⁶Srostracods values during the oldest meltwater period suggest melting solely of the eastern Eurasian Ice Sheet. In contrast, during the younger meltwater periods, exceptional high ⁸⁷Sr/⁸⁶Srostracods values point towards additional meltwater from the western Eurasian Ice Sheet. A surplus from melting glaciers in the Tian Shan and Pamir Mountains that finally entered the Caspian Sea via the Amu Darya and Sry Darya probably amplified the input of high radiogenic Sr-isotope water. We also show that higher temperatures and productivity suggest Dansgaard-Oeschger-like climate variability during the first half of MIS 6.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-16
    Description: Here we provide three new Holocene (11–0 cal ka BP) alkenone-derived sea surface temperature (SST) records from the southernmost Chilean fjord region (50–53°S). SST estimates may be biased towards summer temperature in this region, as revealed by a large set of surface sediments. The Holocene records show consistently warmer than present-day SSTs except for the past ~ 0.6 cal ka BP. However, they do not exhibit an early Holocene temperature optimum as registered further north off Chile and in Antarctica. This may have resulted from a combination of factors including decreased inflow of warmer open marine waters due to lower sea-level stands, enhanced advection of colder and fresher inner fjord waters, and stronger westerly winds. During the mid-Holocene, pronounced short-term variations of up to 2.5°C and a cooling centered at ~ 5 cal ka BP, which coincides with the first Neoglacial glacier advance in the Southern Andes, are recorded. The latest Holocene is characterized by two pronounced cold events centered at ~ 0.6 and 0.25 cal ka BP, i.e., during the Little Ice Age. These cold events have lower amplitudes in the offshore records, suggesting an amplification of the SST signal in the inner fjords.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-30
    Description: The Drake Passage, as the narrowest passage around Antarctica, exerts significant influences on the physical, chemical, and biological interactions between the Pacific and Atlantic Ocean. Here, we identify terrigenous sediment sources and transport pathways in the Drake Passage region over the past 140 ka BP (thousand years before present), based on grain size, clay mineral assemblages, geochemistry and mass-specific magnetic susceptibility records. Terrigenous sediment supply in the Drake Passage is mainly derived from the southeast Pacific, southern South America and the Antarctic Peninsula. Our results provide robust evidence that the Antarctic Circumpolar Current (ACC) has served as the key driver for sediment dispersal in the Drake Passage. High glacial mass accumulation rates indicate enhanced detrital input, which was closely linked to a large expansion of ice sheets in southern South America and on the Antarctic Peninsula during the glacial maximum, as significantly advanced glaciers eroded more glaciogenic sediments from the continental hinterlands into the Drake Passage. Moreover, lower glacial sea levels exposed large continental shelves, which together with weakened ACC strength likely amplified the efficiency of sediment supply and deposition in the deep ocean. In contrast, significant glaciers' shrinkage during interglacials, together with higher sea-level conditions and storage of sediment in nearby fjords reduced terrigenous sediment inputs. Furthermore, a stronger ACC may have induced winnowing effects and further lowered the mass accumulation rates. Evolution of ice sheets, sea level changes and climate related ACC dynamic have thus exerted critical influences on the terrigenous sediment supply and deposition in the Drake Passage region over the last glacial-interglacial cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...