GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (2)
  • Elsevier  (2)
  • 1
    Publication Date: 2019-09-23
    Description: Bottom currents and their margin-shaping character became a central aspect in the research field of sediment dynamics and paleoceanography during the last decades due to their potential to form large contourite depositional systems (CDS), consisting of both erosive and depositional features. A major CDS at the northern Argentine continental margin was studied off the Rio de la Plata River by means of seismo- and hydro-acoustic methods including conventional and high-resolution seismic, parametric echosounder and single and swath bathymetry. Additionally, hydrographic data were considered allowing jointly interpretation of morphosedimentary features and the oceanographic framework, which is dominated by the presence of the dynamic and highly variable Brazil-Malvinas Confluence. We focus on three regional contouritic terraces identified on the slope in the vicinity of the Mar del Plata Canyon. The shallowest one, the La Plata Terrace (similar to 500 m), is located at the Brazil Current/Antarctic Intermediate Water interface characterized by its deep and distinct thermocline. In similar to 1200 m water depth the Ewing Terrace correlates with the Antarctic Intermediate Water/Upper Circumpolar Deep Water interface. At the foot of the slope in similar to 3500 m the Necochea Terrace marks the transition between Lower Circumpolar Deep Water and Antarctic Bottom Water during glacial times. Based on these correlations, a comprehensive conceptual model is proposed, in which the onset and evolution of contourite terraces is controlled by short- and long-term variations of water mass interfaces. We suggest that the terrace genesis is strongly connected to the turbulent current pattern typical for water mass interfaces. Furthermore, the erosive processes necessary for terrace formation are probably enhanced due to internal waves, which are generated along strong density gradients typical for water mass interfaces. The terraces widen through time due to locally focused, partly helical currents along the steep landward slopes and more tabular conditions seaward along the terrace surface. Considering this scheme of contourite terrace development, lateral variations of the morphosedimentary features off northern Argentina can be used to derive the evolution of the Brazil-Malvinas Confluence on geological time scales. We propose that the Brazil-Malvinas Confluence in modern times is located close to its southernmost position in the Quaternary, while its center was shifted northward during cold periods
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-08
    Description: Large sedimentary deposits consisting of several major contourite drifts were studied by means of high-resolution multichannel seismic data at the middle slope along the Northern Argentina Continental Margin to determine their evolutionary stages as well as to identify and assess the possible impact of Northern Source Deep Water (NSDW) on the slope architecture. The imaged contouritic sediments allow decoding on the regional paleo-oceanographic setting of the last 32 Ma. Earliest contouritic sedimentation can be observed close to the Eocene/Oligocene boundary based on an aggradational stacking pattern with a complex and wavy seismic facies, pointing toward a hydrodynamically turbulent flow pattern. This facies is most likely related to the opening of the Drake Passage associated with global cooling and a strengthening of surface, intermediate and deep ocean currents in the Southern Ocean. During the Middle Miocene plastered drift sequences with an aggradational reflection pattern were deposited. Their depositional style indicates weak, non-turbulent current conditions, which are interpreted to be related to a vertical shift of water mass interfaces caused by the first formation of NSDW during the Mid-Miocene climatic optimum. On top, the formation of plastered drift sequences led to the modern extent of the Ewing Terrace, which was probably controlled by the continuous strengthening and thickening of NSDW until the final closure of the Central American Seaway (CAS). During the Pliocene and Quaternary, after the complete closure of the CAS and under the influence of the full force of the NSDW, mounded plastered drift sequences are built upon the Ewing Terrace generating the modern slope morphology. Therefore, we suggest that deep-water production in the northern hemisphere plays a significant role by controlling the shape of the continental slopes in the southwestern South Atlantic since the Middle Miocene. Highlights ► Slope of northern Argentine Continental margin is current controlled since 32 Ma. ► Variability of Northern Source Deep Water (NSDW) controls sedimentary processes. ► Sedimentary processes are susceptible to changes of the Brazil-Malvinas Confluence. ► Impact of NSDW on slope processes is underestimated in the southern hemisphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...