GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    SPRINGER HEIDELBERG
    In:  EPIC3Journal of Comparative Physiology B-Biochemical Systemic and Environmentalphysiol, SPRINGER HEIDELBERG, 185(7), pp. 767-781, ISSN: 0174-1578
    Publication Date: 2015-12-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-04
    Description: The cellular mechanisms of calcification in sea urchin larvae are still not well understood. Primary mesenchyme cells within the larval body cavity form a syncytium to secrete CaCO3 spicules from intracellular amorphous CaCO3 (ACC) stores. We studied the role of Na+K+2Cl− cotransporter (NKCC) in intracellular ACC accumulation and larval spicule formation of Strongylocentrotus droebachiensis. First, we incubated growing larvae with three different loop diuretics (azosemide, bumetanide, and furosemide) and established concentration-response curves. All loop diuretics were able to inhibit calcification already at concentrations that specifically inhibit NKCC. Calcification was most effectively inhibited by azosemide (IC50 = 6.5 μM), while larval mortality and swimming ability were not negatively impacted by the treatment. The inhibition by bumetanide (IC50 = 26.4 μM) and furosemide (IC50 = 315.4 μM) resembled the pharmacological fingerprint of the mammalian NKCC1 isoform. We further examined the effect of azosemide on the maintenance of cytoplasmic cords and on the occurrence of calcification vesicles using fluorescent dyes (calcein, FM1-43). Fifty micromolars of azosemide inhibited the maintenance of cytoplasmic cords and resulted in increased calcein fluorescence within calcification vesicles. The expression of NKCC in S. droebachiensis was verified by PCR and Western blot with a specific NKCC antibody. In summary, the pharmacological profile of loop diuretics and their specific effects on calcification in sea urchin larvae suggest that they act by inhibition of NKCC via repression of cytoplasmic cord formation and maintenance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-04
    Description: Marine teleost fish sustain compensation of extracellular pH after exposure to hypercapnia by means of efficient ion and acid-base regulation. Elevated rates of ion and acid-base regulation under hypercapnia may be stimulated further by elevated temperature. Here, we characterized the regulation of transepithelial ion transporters (NKCC1, NBC1, SLC26A6, NHE1 and 2) and ATPases (Na(+)/K(+) ATPase and V-type H(+) ATPase) in gills of Atlantic cod (Gadus morhua) after 4 weeks of exposure to ambient and future PCO2 levels (550 μatm, 1200 μatm, 2200 μatm) at optimum (10 °C) and summer maximum temperature (18 °C), respectively. Gene expression of most branchial ion transporters revealed temperature- and dose-dependent responses to elevated PCO2. Transcriptional regulation resulted in stable protein expression at 10 °C, whereas expression of most transport proteins increased at medium PCO2 and 18 °C. mRNA and protein expression of distinct ion transport proteins were closely co-regulated, substantiating cellular functional relationships. Na(+)/K(+) ATPase capacities were PCO2 independent, but increased with acclimation temperature, whereas H(+) ATPase capacities were thermally compensated but decreased at medium PCO2 and 10 °C. When functional capacities of branchial ATPases were compared with mitochondrial F1Fo ATP-synthase strong correlations of F1Fo ATP-synthase and ATPase capacities generally indicate close coordination of branchial aerobic ATP demand and supply. Our data indicate physiological plasticity in the gills of cod to adjust to a warming, acidifying ocean within limits. In light of the interacting and non-linear, dose-dependent effects of both climate factors the role of these mechanisms in shaping resilience under climate change remains to be explored.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-02
    Description: Shallow coral reefs provide food, income, well-being and coastal protection to countries around the Indian Ocean and Asia. These reefs are under threat due to many anthropogenic stressors including pollution, sedimentation, overfishing, sea surface warming and habitat destruction. Ocean acidification interacts with these factors to exacerbate stress on coral reefs. Effective solutions in tackling the impact of ocean acidification require a thorough understanding of the current adaptive capacity of each nation to deal with the consequences. Here, we aim to help the decision-making process for policy makers in dealing with these future challenges at the regional and national levels. We recommend that a series of evaluations be made to understand the current status of each nation in this region in dealing with ocean acidification impacts by assessing the climate policy, education, policy coherence, related research activities, adaptive capacity of reef-dependent economic sectors and local management. Indonesia and Thailand, are selected as case studies. We also highlight general recommendations on mitigation and adaptation to ocean acidification impacts on coral reefs and propose well-designed research program would be necessary for developing a more targeted policy agenda in this region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...