GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-10-18
    Description: Dissolved organic matter (DOM) is ubiquitous in natural waters and plays a central role in the biogeochemistry in riverine, estuarine and marine environments. This study quantifies and characterizes solid-phase extractable DOM and trace element complexation at different salinities in the Weser and Elbe River, northern Germany, and the North Sea. Dissolved organic carbon (DOC), total dissolved nitrogen (TDN), Co and Cu concentrations were analyzed in original water samples. Solid-phase extracted (SPE) water samples were analyzed for DOC (DOCSPE), dissolved organic nitrogen (DONSPE), sulfur (DOSSPE) and trace metal (51V, 52Cr, 59Co, 60Ni, 63Cu, 75As) concentrations. Additionally, different pre-treatment conditions (acidification vs. non-acidification prior to SPE) were tested. In agreement with previous studies, acidification led to generally higher recoveries for DOM and trace metals. Overall, higher DOM and trace metal concentrations and subsequently higher complexation of trace metals with carbon and sulfur-containing organic complexes were found in riverine compared to marine samples. With increasing salinity, the concentrations of DOM decreased due to estuarine mixing. However, the slightly lower relative decrease of both, DOCSPE and DONSPE (~77%) compared to DOSSPE (~86%) suggests slightly faster removal processes for DOSSPE. A similar distribution of trace metal and carbon and sulfur containing DOM concentrations with salinity indicates complexation of trace metals with organic ligands. This is further supported by an increase in Co and Cu concentration after oxidation of organic complexes by UV treatment. Additionally, the complexation of metals with organic ligands (analyzed by comparing metal/DOCSPE and metal/DOSSPE ratios) decreased in the order Cu 〉 As 〉 Ni 〉 Cr 〉 Co and thus followed the Irving-Williams order. Differences in riverine and marine trace metal containing DOMSPE are summarized by their average molar ratios of (C107N4P0.013S1)1000V0.05Cr0.33Co0.19Ni0.39Cu3.41As0.47 in the riverine endmember and (C163N7P0.055S1)1000V0.05Cr0.47Co0.16Ni0.07Cu4.05As0.58 in the marine endmember.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-23
    Description: The Southern Ocean (SO) is a major sink for anthropogenic atmospheric carbon dioxide (CO2), potentially harbouring even greater potential for additional sequestration of CO2 through enhanced phytoplankton productivity. In the SO, primary productivity is primarily driven by bottom up processes (physical and chemical conditions) which are spatially and temporally heterogeneous. Due to a paucity of trace metals (such as iron) and high variability in light, much of the SO is characterised by an ecological paradox of high macronutrient concentrations yet uncharacteristically low chlorophyll concentrations. It is expected that with increased anthropogenic CO2 emissions and the coincident warming, the major physical and chemical process that govern the SO will alter, influencing the biological capacity and functioning of the ecosystem. This review focuses on the SO primary producers and the bottom up processes that underpin their health and productivity. It looks at the major physico-chemical drivers of change in the SO, and based on current physiological knowledge, explores how these changes will likely manifest in phytoplankton, specifically, what are the physiological changes and floristic shifts that are likely to ensue and how this may translate into changes in the carbon sink capacity, net primary productivity and functionality of the SO.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-22
    Description: The ‘Iron Hypothesis’ suggests a fertilization of the Southern Ocean by increased dust deposition in glacial times. This promoted high primary productivity and contributed to lower atmospheric pCO2. In this study, the diatom Pseudo-nitzschia subcurvata, known to form prominent blooms in the Southern Ocean, was grown under simulated glacial and interglacial climatic conditions to understand how iron (Fe) availability (no Fe or Fe addition) in conjunction with different pCO2 levels (190 and 290 μatm) influences growth, particulate organic carbon (POC) production and photophysiology. Under both glacial and interglacial conditions, the diatom grew with similar rates. In comparison, glacial conditions (190 μatm pCO2 and Fe input) favored POC production by P. subcurvata while under interglacial conditions (290 μatm pCO2 and Fe deficiency) POC production was reduced, indicating a negative effect caused by higher pCO2 and low Fe availability. Under interglacial conditions, the diatom had, however, thicker silica shells. Overall, our results show that the combination of higher Fe availability with low pCO2, present during the glacial ocean, was beneficial for the diatom P. subcurvata, thus contributing more to primary production during glacial compared to interglacial times. Under the interglacial ocean conditions, on the other hand, the diatom could have contributed to higher carbon export due to its higher degree of silicification.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-01
    Description: Next to iron (Fe), recent phytoplankton-enrichment experiments identified manganese (Mn) to (co-)limit Southern Ocean phytoplankton biomass and species composition. Since taxonomic diversity affects aggregation time and sinking rate, the efficiency of the biological carbon pump is directly affected by community structure. However, the impact of FeMn co-limitation on Antarctic primary production, community composition, and the subsequent export of carbon to depth requires more investigation. In situ samplings of 6 stations in the understudied southern Weddell Sea revealed that surface Fe and Mn concentrations, primary production, and carbon export rates were all low, suggesting a FeMn co-limited phytoplankton community. An Fe and Mn addition experiment examined how changes in the species composition drive the aggregation capability of a natural phytoplankton community. Primary production rates were highest when Fe and Mn were added together, due to an increased abundance of the colonial prymnesiophyte Phaeocystis antarctica. Although the community remained diatom dominated, the increase in Phaeocystis abundance led to highly carbon-enriched aggregates and a 4-fold increase in the carbon export potential compared to the control, whereas it only doubled in the Fe treatment. Based on the outcome of the FeMn-enrichment experiment, this region may suffer from FeMn co-limitation. As the Weddell Sea represents one of the most productive Antarctic marginal ice zones, our findings highlight that in response to greater Fe and Mn supply, changes in plankton community composition and primary production can have a disproportionally larger effect on the carbon export potential.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...