GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-26
    Description: Highlights • A new description of sediment phosphorus dynamics was implemented in a 3D-model. • Oxygen consumption affects oxygen penetration in coastal sediments. • Low oxygen concentrations determine the oxygen penetration in deeper water sediments. • More than 80% of the phosphorus loads (1980–2008) are retained in the Baltic Sea. • Phosphorus is released from anoxic sediments and retained in oxic sediments. Abstract The new approach to model the oxygen dependent phosphate release by implementing formulations of the oxygen penetration depths (OPD) and mineral bound inorganic phosphorus pools to the Swedish Coastal and Ocean Biogeochemical model (SCOBI) is described. The phosphorus dynamics and the oxygen concentrations in the Baltic proper sediment are studied during the period 1980–2008 using SCOBI coupled to the 3D-Rossby Centre Ocean model. Model data are compared to observations from monitoring stations and experiments. The impact from oxygen consumption on the determination of the OPD is found to be largest in the coastal zones where also the largest OPD are found. In the deep water the low oxygen concentrations mainly determine the OPD. Highest modelled release rate of phosphate from the sediment is about 59 × 103 t P year− 1 and is found on anoxic sediment at depths between 60–150 m, corresponding to 17% of the Baltic proper total area. The deposition of organic and inorganic phosphorus on sediments with oxic bottom water is larger than the release of phosphorus, about 43 × 103 t P year− 1. For anoxic bottoms the release of total phosphorus during the investigated period is larger than the deposition, about 19 × 103 t P year− 1. In total the net Baltic proper sediment sink is about 23.7 × 103 t P year− 1. The estimated phosphorus sink efficiency of the entire Baltic Sea is on average about 83% during the period.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-03
    Description: Geosciences, Vol. 7, Pages 111: Structure of Volatile Conduits beneath Gorely Volcano (Kamchatka) Revealed by Local Earthquake Tomography Geosciences doi: 10.3390/geosciences7040111 Authors: Pavel Kuznetsov Ivan Koulakov Andrey Jakovlev Ilyas Abkadyrov Evgeny Deev Evgeny Gordeev Sergey Senyukov Sami El Khrepy Nassir Al Arifi Gorely is an active volcano located 75 km from Petropavlovsk-Kamchatsky, Kamchatka. In 2010–2015, it exhibited strong activity expressed by anomalously high gas emission. In 2013–2014, we deployed a temporary network consisting of 20 temporary seismic stations that operated for one year. We selected 333 events with 1613 P-wave and 2421 S-wave arrival times to build the first tomographic model of this volcano. The seismic model was carefully verified using a series of synthetic tests. Our tomographic model provides a mechanism for volatile feeding of Gorely. An unexpected feature of the model was low Vp/Vs ratios; below 1.4 in some parts. One reason for such low Vp/Vs ratios is gas contamination due to magma degassing. In the central part of the model, directly underneath the Gorely crater, we observe a 2.5 km wide and 1.5 km thick seismic anomaly with a very high Vp/Vs ratio of up to 2. This may represent a magma reservoir with a high melt and/or volatile content. The upper limit of this anomaly, 2.5 km below the surface, may indicate the degassing level, which coincides with the most intense seismicity. Below this reservoir, we observe another columnar high Vp/Vs ratio anomaly. This can be interpreted as a conduit bringing magma and fluids from deeper sources.
    Electronic ISSN: 2076-3263
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...