GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Elsevier  (1)
  • ROYAL SOC  (1)
  • Wiley  (1)
  • Institut für Meereskunde
  • 1
    Publication Date: 2020-09-07
    Description: Two mooring arrays carrying sediment traps were deployed from September 2011 to August 2012 at ∼83°N on each side of the Gakkel Ridge in the Nansen and Amundsen Basins to measure downward particle flux below the euphotic zone (approx. 250m) and approximately 150 m above seafloor at approximately 3500 and 4000m depth, respectively. In a region that still experiences nearly complete ice cover throughout the year, export fluxes of total particulate matter (TPM), particulate organic carbon (POC), particulate nitrogen (PN), biogenic matter, lithogenic matter, biogenic particulate silica (bPSi), calcium carbonate (CaCO3 ), protists and biomarkers only slightly decreased with depth. Seasonal variations of particulate matter fluxes were similar on both sides of the Gakkel Ridge. Somewhat higher export rates in the Amundsen Basin and differences in the composition of the sinking TPM and bPSi on each side of the Gakkel Ridge probably reflected the influence of the Lena River/Transpolar Drift in the Amundsen Basin and the influence of Atlantic water in the Nansen Basin. Low variations in particle export with depth revealed a limited influence of lateral advection in the deep barren 2 Eurasian Basin. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-20
    Description: A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August–September 2012. Sediment traps were deployed at 2–5 m and 20–25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth-Science Reviews 169 (2017): 132–145, doi:10.1016/j.earscirev.2017.04.005.
    Description: The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
    Description: M.I. Berning is financed by the German Research Foundation Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas (Project DFG-1158 SCHR 667/15-1).
    Keywords: Euthecosomatous pteropods ; Ocean acidification ; Calcifying organisms ; Marine ecosystem ; Carbonate chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...