GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-11
    Description: In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 Cal. kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0–11 Cal. kyr BP) annual accumulation of 194×106 t yr−1 of total sediment for the whole Kara Sea. Based on late Holocene (modern) sediment accumulation in the estuaries, probably 12×106 t yr−1 of riverine suspended matter (i.e., about 30% of the input) may escape the marginal filter on a geological time scale and is transported onto the open Kara Sea shelf. The high-resolution magnetic susceptibility record of a Yenisei core suggests a short-term variability in Siberian climate and river discharge on a frequency of 300–700 yr. This variability may reflect natural cyclic climate variations to be seen in context with the interannual and interdecadal environmental changes recorded in the High Northern Latitudes over the last decades, such as the NAO/AO pattern. A major decrease in MS values starting near 2.5 Cal. kyr BP, being more pronounced during the last about 2 Cal. kyr BP, correlates with a cooling trend over Greenland as indicated in the GISP-2 Ice Core, extended sea-ice cover in the North Atlantic, and advances of glaciers in western Norway. Our still preliminary interpretation of the MS variability has to be proven by further MS records from additional cores as well as other high-resolution multi-proxy Arctic climate records.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: On the basis of various lithological, mircopaleontological and isotopic proxy records covering the last 30,000 calendar years (cal kyr) the paleoenvironmental evolution of the deep and surface water circulation in the subarctic Nordic seas was reconstructed for a climate interval characterized by intensive ice-sheet growth and subsequent decay on the surrounding land masses. The data reveal considerable temporal changes in the type of thermohaline circulation. Open-water convection prevailed in the early record, providing moisture for the Fennoscandian-Barents ice sheets to grow until they reached the shelf break at ∼26 cal. kyr and started to deliver high amounts of ice-rafted debris (IRD) into the ocean via melting icebergs. Low epibenthic δ18O values and small-sized subpolar foraminifera observed after 26 cal. kyr may implicate that advection of Atlantic water into the Nordic seas occurred at the subsurface until 15 cal. kyr. Although modern-like surface and deep-water conditions first developed at ∼13.5 cal. kyr, thermohaline circulation remained unstable, switching between a subsurface and surface advection of Atlantic water until 10 cal. kyr when IRD deposition and major input of meltwater ceased. During this time, two depletions in epibenthic δ13C are recognized just before and after the Younger Dryas indicating a notable reduction in convectional processes. Despite an intermittent cooling at ∼8 cal. kyr, warmest surface conditions existed in the central Nordic seas between 10 and 6 cal. kyr. However, already after 7 cal. kyr the present day situation gradually evolved, verified by a strong water mass exchange with the Arctic Ocean and an intensifying deep convection as well as surface temperature decrease in the central Nordic seas. This process led to the development of the modern distribution of water masses and associated oceanographic fronts after 5 cal. kyr and, eventually, to today's steep east–west surface temperature gradient. The time discrepancy between intensive vertical convection after 5 cal. kyr but warmest surface temperatures already between 10 and 6 cal. kyr strongly implicates that widespread postglacial surface warming in the Nordic seas was not directly linked to the rates in deep-water formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-23
    Description: Dinoflagellate cysts and other organic-walled microfossils have been studied in recent surface sediments from the entire Norwegian-Greenland Sea. More than 30 taxa have been recognized, of which only few show a distinct distribution pattern, and allow description of four assemblages. The occurrence of most taxa is related to the relatively warmer waters of the Norwegian Sea. Algidaspaeridium? minutum s.1., Brigantedinium simplex and Impagidinium? pallidum are the only species showing a preference for colder water masses. Two species, I.? pallidum and Nematosphaeropsis labyrinthus are mainly restricted to the oceanic environment, whereas the other species have also been reported from neritic environments in previous studies. Due to the limited knowledge of the ecological and sedimentological factors influencing the occurrence of dinoflagellate cysts in oceanic environments, their distribution in recent sediments can be only related to surface water masses in a broad sense. Although the distribution of assemblages correlates with specific surface water masses, comparison with assemblages recovered from sediment traps deployed basinwide in the Norwegian-Greenland Sea (Dale and Dale, 1992) revealed some major discrepancies in species composition and percentage abundances. The differences cannot be explained with certainty at the moment, although there is some evidence that transport of dinoflagellate cysts and other fossilizable microplankton in water masses by currents, in sea-ice and sediments may modify the assemblages found in recent oceanic surface sediments from the Norwegian-Greenland Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-23
    Description: Coccolith and dinoflagellate cyst assemblages have been investigated in five sediment cores from the Norwegian Sea and Fram Strait. Both fossil groups are characterized by similar patterns of composition. The assemblages contain high proportions of single species. The coccolith flora is of low diversity and consists almost entirely of Coccolithus pelagicus and Emiliania huxleyi. The dinoflagellate cysts are generally dominated by Operculodinium centrocarpum and Nematosphaeropsis labyrinthus. Other species, especially Bitectatodinium tepikiense, Peridinium faeroense and Impagidinium pallidum, sometimes contribute considerably to the assemblages. Based on the abundance of the assemblages and the ratio change between the dominating species it has been possible to establish three intervals of distinct major changes in surface water mass conditions. Sparse occurrences of coccoliths and dinoflagellate cysts have been observed before 10,000 yrs. B.P., indicating harsh environmental conditions with a distinct influence of meltwater and temporarily very slight inflow of Atlantic water. The modern surface-water circulation pattern was reinitiated during Termination IB. The assemblages suggest slightly cooler and probably less saline surface water conditions than are present today until 7500 yrs B.P. Solar insolation may have caused a first temperature peak which is responsible for the early Holocene productivity maximum. A considerable change in the composition of dinocyst and coccolith assemblages occurs corresponding approximately to the onset of the Holocene climatic optimum. This change was most probably linked to an almost synchronous reorganization of the hydrographic properties in the entire North Atlantic realm after the ice sheets had vanished. Since 6000 yrs B.P. the Norwegian Current with its modern oceanographic and ecological properties has been fully established.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Absolute abundances (concentrations) of dinoflagellate cysts are often determined through the addition of Lycopodium clavatum marker-grains as a spike to a sample before palynological processing. An interlaboratory calibration exercise was set up in order to test the comparability of results obtained in different laboratories, each using its own preparation method. Each of the 23 laboratories received the same amount of homogenized splits of four Quaternary sediment samples. The samples originate from different localities and consisted of a variety of lithologies. Dinoflagellate cysts were extracted and counted, and relative and absolute abundances were calculated. The relative abundances proved to be fairly reproducible, notwithstanding a need for taxonomic calibration. By contrast, excessive loss of Lycopodium spores during sample preparation resulted in non-reproducibility of absolute abundances. Use of oxidation, KOH, warm acids, acetolysis, mesh sizes larger than 15 μm and long ultrasonication (N1 min) must be avoided to determine reproducible absolute abundances. The results of this work therefore indicate that the dinoflagellate cyst worker should make a choice between using the proposed standard method which circumvents critical steps, adding Lycopodium tablets at the end of the preparation and using an alternative method.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    GEOMAR Forschungszentrum für marine Geowissenschaften
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität, Kiel, 104 pp . GEOMAR-Report, 007 . DOI 10.3289/GEOMAR_REP_7_1991 〈http://dx.doi.org/10.3289/GEOMAR_REP_7_1991〉.
    Publication Date: 2017-06-23
    Description: Dinoflagellate cysts have been investigated in surface from the Norwegian-Greenland Sea and short sediment cores Norwegian Sea spanning the last 15,000 years. sediments from the The distribution of single species and assemblages is related to the bathymetry and oceanography of the Norwegian-Greenland Sea. Oceanographic fronts can be recognized in the distribution of species and assemblages. Round protoperidinoid cysts, MuZtispinuZa minuta s.l. and HaZodinium spp., characterize the assemblages from the East Greenland Shelf. Nematosphaeropsis Zabyrinthus and ?Impagidinium paZZidum dominate the assemblages in the central leeland and Greenland Seas. Operculodinium centrocarpum is important in the marginal area of the Arctic domain and dominates clearly the assemblages from the Norwegian Sea. Assernblages from the shelf of north leeland are marked by cysts of Peridinium faeroense. The distribution pattern of single species and assemblages reveals that relatively warm north Atlantic waters only pass through the Faeroe Shetland Canal into the Norwegian-Greenland Sea and further · up into the eastern Arctic Ocean and the Barents Sea. In the southern Norwegian Sea the Atlantic water masses are already modified by advection of surface waters from the North Sea. The development of the Norwegian current has been reconstructed by means of dinoflagellate cysts since termination r •. North Atlantic water masses have almost always influenced the surface water masses in the last 15,000 years. Since ca. 12,000 to 13,000 BP, the influence of warmer North Atlantic waters increased significantly in the NorwegianGreenland Sea. The modern circulation system was established around 10,000 BP. First, the Norwegian current was cooler and less saline, and then obtained its modern hydrographic properties around 6,000 to 7,000 BP. A slight change towards cooler conditions is documented in the western marginal areas in the last 2,000 to 3,000 years. Changes in the oceanography of the Norwegian-Greenland Sea must be related to modifications in the water masses and the circulation system of the entire North Atlantic. The discontinous influx of meltwater may have been an important factor for changes in the oceanography and the ecological conditions.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Marine sediments from the Vøring Plateau (Norwegian Sea) have been studied for their dinoflagellate cyst (dinocyst) and foraminiferal content in order to reconstruct sea-surface conditions in the eastern Norwegian Sea during Marine Isotope Stage (MIS) 5e. In combination with stable oxygen isotope and ice rafted detritus (IRD) data, the variations in foraminiferal and dinocyst assemblage composition reflect a stepwise transition from the final phase of deglaciation (Termination II) into typical interglacial conditions. This stepwise change is repeated subsequently during the cooling conditions of glacial inception towards MIS 5d. The interval studied is characterized by relatively high abundances of Bitectatodinium tepikiense, in comparison to present-day values in the area, indicating a larger seasonal temperature amplitude with enhanced surface water stratification during MIS 5e. The important occurrence of the warm-temperate dinocyst Spiniferites mirabilis s.l. concurrent with subpolar foraminifers Turborotalita quinqueloba, Globigerina bulloides, and Globigerinita glutinata reveals that most pronounced interglacial marine conditions prevailed in the area just prior to the transition towards MIS 5d. The late stratigraphic position of this phase in the interglacial is verified by comparison with dinocyst data from south of Iceland, manifesting its over-regional implication. Besides the good agreement in dinocyst and foraminiferal assemblage changes, the variations in and between both fossil assemblages also point to the existence of some significant surface water variability in the eastern Norwegian Sea during MIS 5e.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier, 546, pp. 109605, ISSN: 00310182
    Publication Date: 2020-06-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-16
    Description: We present inorganic geochemical analyses of pore waters and sediments of two Late Quaternary sediment cores from the western Arctic Ocean (southern Mendeleev Ridge, RV Polarstern Expedition ARK-XXIII/3), focussing on the composition and origin of distinct, brown-colored, Mn-rich sediment layers. Carbonate enrichments occur in association with these layers as peaks in Ca/Al, Mg/Al, Sr/Al and Sr/Mg, suggesting enhanced input of both ice-rafted and biogenic carbonate. For the first time, we show that the Mn-rich layers layers are also consistently enriched in the scavenged trace metals Co, Cu, Mo and Ni. Distinct bioturbation patterns, specifically well-defined brown burrows into the underlying sediments, suggest these metal enrichments formed close to the sediment–water interface. The geochemical signature of these metal- and carbonate-rich layers most probably documents formation under warmer climate conditions with an intensified continental hydrological cycle and only seasonal sea ice cover. Both rivers and sea ice delivered trace metals to the Arctic Ocean, while enhanced seasonal productivity exported reactive organic matter to the sea floor. The coeval deposition of organic matter, Mn (oxyhydr)oxides and trace metals triggered intense diagenetic Mn cycling at the sediment–water interface. These processes resulted in the formation of Mn and trace metal enrichments, and the degradation of labile organic matter. With the onset of cooler conditions, reduced riverine runoff and/or a solid sea ice cover terminated the input of riverine trace metal and fresh organic matter, resulting in deposition of grayish-yellowish, metal-poor sediments. Oxygen depletion of Arctic bottom waters under these cooler conditions is not supported by our data, and did not cause the sedimentary Mn distribution. While the original composition and texture of the brown layers resulted from specific climatic conditions and corresponding diagenetic processes, pore water data show that diagenetic Mn redistribution is still affecting the organic-poor deeper sediments. Given persistent steady state conditions, purely authigenic Mn-rich brown layers may form, while others may be partly or completely dissolved. The degree of diagenetic Mn redistribution largely depends on the depositional environment, the Mn and organic matter availability, and apparently affected the Co/Mo ratios of Mn-rich layers. Thus, brown Arctic layers are not necessarily synchronous features, and should not be correlated across the Arctic Ocean without additional age control.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Review of Palaeobotany and Palynology, Elsevier, 211, pp. 97-106, ISSN: 0034-6667
    Publication Date: 2014-11-25
    Description: A detailed palynological investigation of the almost continuous middle through upper Miocene sediment sequence of ODP Hole 907A in the Iceland Sea revealed the presence of a new species of the dinoflagellate cyst genus Batiacasphaera, and a new species of the acritarch genus Lavradosphaera. Batiacasphaera bergenensis sp. nov. and Lavradosphaera elongata sp. nov. are both morphologically distinctive and have well-defined stratigraphic range tops that are independently constrained by the pristine paleomagnetic record of Hole 907A. Both species disappeared within a narrow interval across the middle to late Miocene boundary, when small-scale glaciations on Greenland were large enough to reach sea level. The distinct morphology of the proposed species and their highest occurrence in this critical interval highlights their potential for future biostratigraphic application in the Miocene of the high northern latitudes, an area important for understanding the Late Cenozoic transition into a bipolar glaciated world.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...