GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Royal Society of London
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences, 362 (1487). pp. 2061-2078.
    Publication Date: 2021-08-23
    Description: The rates of metabolism in animals vary tremendously throughout the biosphere. The origins of this variation are a matter of active debate with some scientists highlighting the importance of anatomical or environmental constraints, while others emphasize the diversity of ecological roles that organisms play and the associated energy demands. Here, we analyse metabolic rates in diverse marine taxa, with special emphasis on patterns of metabolic rate across a depth gradient, in an effort to understand the extent and underlying causes of variation. The conclusion from this analysis is that low rates of metabolism, in the deep sea and elsewhere, do not result from resource (e.g. food or oxygen) limitation or from temperature or pressure constraint. While metabolic rates do decline strongly with depth in several important animal groups, for others metabolism in abyssal species proceeds as fast as in ecologically similar shallow-water species at equivalent temperatures. Rather, high metabolic demand follows strong selection for locomotory capacity among visual predators inhabiting well-lit oceanic waters. Relaxation of this selection where visual predation is limited provides an opportunity for reduced energy expenditure. Large-scale metabolic variation in the ocean results from interspecific differences in ecological energy demand.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Ecological Society of America (ESA)
    In:  Ecology, 89 (12). pp. 3449-3461.
    Publication Date: 2021-08-24
    Description: Although the oceans cover 70% of the Earth's surface and the open ocean is by far the largest ecosystem on the planet, our knowledge regarding diversity patterns of pelagic fauna is very scarce. Here, we examine large-scale latitudinal and depth-related patterns of pelagic cephalopod richness in the Atlantic Ocean in relation to ambient thermal and productive energy availability. Diversity, across 17 biogeochemical regions in the open ocean, does not decline monotonically with latitude, but is positively correlated to the availability of oceanic resources. Mean net primary productivity (NPP), determined from ocean color satellite imagery, explains 37% of the variance in species richness. Outside the poles, the range in NPP explains over 40% of the variability. This suggests that cephalopods are well adapted to the spatial patchiness and seasonality of open-ocean resources. Pelagic richness is also correlated to sea surface temperature, with maximum richness occurring around 15°C and decreasing with both colder and warmer temperatures. Both pelagic and benthos-associated diversities decline sharply from sublittoral and epipelagic regions to the slope and bathypelagic habitats and then steadily to abyssal depths. Thus, higher energy availability at shallow depths seems to promote diversification rates. This strong depth-related trend in diversity also emphasizes the greater influence of the sharp vertical thermal gradient than the smoother and more seasonal horizontal (latitudinal) one on marine diversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...