GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SPRINGER  (3)
  • ESA (Ecological Society of America)  (1)
  • 1
    facet.materialart.
    Unknown
    ESA (Ecological Society of America)
    In:  Ecology, 91 (5). pp. 1401-1413.
    Publication Date: 2020-07-30
    Description: We are investigating effects of the depsipeptide geodiamolide H, isolated from the Brazilian sponge Geodia corticostylifera, on cancer cell lines grown in 3D environment. As shown previously geodiamolide H disrupts actin cytoskeleton in both sea urchin eggs and breast cancer cell monolayers. We used a normal mammary epithelial cell line MCF 10A that in 3D assay results formation of polarized spheroids. We also used cell lines derived from breast tumors with different degrees of differentiation: MCF7 positive for estrogen receptor and the Hs578T, negative for hormone receptors. Cells were placed on top of Matrigel. Spheroids obtained from these cultures were treated with geodiamolide H. Control and treated samples were analyzed by light and confocal microscopy. Geodiamolide H dramatically affected the poorly differentiated and aggressive Hs578T cell line. The peptide reverted Hs578T malignant phenotype to polarized spheroid-like structures. MCF7 cells treated by geodiamolide H exhibited polarization compared to controls. Geodiamolide H induced striking phenotypic modifications in Hs578T cell line and disruption of actin cytoskeleton. We investigated effects of geodiamolide H on migration and invasion of Hs578T cells. Time-lapse microscopy showed that the peptide inhibited migration of these cells in a dose-dependent manner. Furthermore invasion assays revealed that geodiamolide H induced a 30% decrease on invasive behavior of Hs578T cells. Our results suggest that geodiamolide H inhibits migration and invasion of Hs578T cells probably through modifications in actin cytoskeleton. The fact that normal cell lines were not affected by treatment with geodiamolide H stimulates new studies towards therapeutic use for this peptide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-02
    Description: Understanding organismal responses to environmental drivers is relevant to predict species capacities to respond to climate change. However, the scarce information available on intraspecific variation in the responses oversimplifies our view of the actual species capacities. We studied intraspecific variation in survival and larval development of a marine coastal invertebrate (shore crab Carcinus maenas) in response to two key environmental drivers (temperature and salinity) characterising coastal habitats. On average, survival of early larval stages (up to zoea IV) exhibited an antagonistic response by which negative effects of low salinity were mitigated at increased temperatures. Such response would be adaptive for species inhabiting coastal regions of freshwater influence under summer conditions and moderate warming. Average responses of developmental time were also antagonistic and may be categorised as a form of thermal mitigation of osmotic stress. The capacity for thermal mitigation of low-salinity stress varied among larvae produced by different females. For survival in particular, deviations did not only consist of variations in the magnitude of the mitigation effect; instead, the range of responses varied from strong effects to no effects of salinity across the thermal range tested. Quantifying intraspecific variation of such capacity is a critical step in understanding responses to climate change: it points towards either an important potential for selection or a critical role of environmental change, operating in the parental environment and leading to stress responses in larvae.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-07
    Description: Crustacean larvae have served as distinguished models in the field of Ecological Developmental Biology (“EcoDevo”) for many decades, a discipline that examines how developmental mechanisms and their resulting phenotype depend on the environmental context. A contemporary line of research in EcoDevo aims at gaining insights into the immediate tolerance of organisms and their evolutionary potential to adapt to the changing abiotic and biotic environmental conditions created by anthropogenic climate change. Thus, an EcoDevo perspective may be critical to understand and predict the future of organisms in a changing world. Many decapod crustaceans display a complex life cycle that includes pelagic larvae and, in many subgroups, benthic juvenile–adult stages so that a niche shift occurs during the transition from the larval to the juvenile phase. Already at hatching, the larvae possess a wealth of organ systems, many of which also characterise the adult animals, necessary for autonomously surviving and developing in the plankton and suited to respond adaptively to fluctuations of environmental drivers. They also display a rich behavioural repertoire that allows for responses to environmental key factors such as light, hydrostatic pressure, tidal currents, and temperature. Cells, tissues, and organs are at the basis of larval survival, and as the larvae develop, their organs continue to grow in size and complexity. To study organ development, researchers need a suite of state-of-the-art methods adapted to the usually very small size of the larvae. This review and the companion paper set out to provide an overview of methods to study organogenesis in decapod larvae. This first section focuses on larval rearing, preparation, and fixation, whereas the second describes methods to study cells, tissues, and organs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...