GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 117 (3). pp. 271-278.
    Publication Date: 2018-03-21
    Description: In ecological studies, especially in those dealing with energy circulation in nature, determinations of the energy content of organisms are inevitable. Energy determinations are, however, laborious and time-consuming. Average conversion factors based on different species form various areas and seasons may often be a shortcut for overcoming this problem. To establish general energy conversion factors for aquatic invertebrate groups, we used 376 values of J · mg−1 DW and 255 values of J · mg−1 AFDW, representing 308 and 229 species, respectively. The dry-weight-to-energy factors were highly variable both within and between taxonomic groups, e.g.: Porifera, 6.1 J · mg−1 DW; insect larvae, 22.4 J · mg−1 DW (median values). The energy-conversion factors related to AFDW showed a much smaller dispersion with a minimum median value of 19.7 J · mg−1 AFDW (Ascidiacea) and a maximum of 23.8 J · mg−1 AFDW (insect larvae). Within taxonomic groups, the 95% confidence intervals (AFDW) were only a few percent of the median values. The use of energy-conversion factors based on AFDW is preferable due to their lower dispersion. For aquatic macrobenthic invertebrates, a general conversion factor of 23 J · mg−1 AFDW can be used.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-05
    Description: Euphausiids constitute a major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Here we introduce a global krill respiration ANN (artificial neural network) model including the effect of latitude (LAT), the day of the year (DoY), and the number of daylight hours (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r2 = 0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. For single Euphausiid species investigated in a large range of DLh and DoY, we also tested the standard respiration rate for seasonality with Multiple Linear Regression (MLR) and General Additive model (GAM). GAM successfully integrated DLh (r2 = 0.563) and DoY (r2 = 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. We could not detect DLh or DoY effects in the North Pacific krill Euphausia pacifica, and our findings for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-16
    Description: Euphausiids constitute a major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Here we introduce a global krill respiration ANN (Artificial Neural Network) model including the effect of latitude (LAT), the day of the year (DoY), and the number of daylight hours (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r2=0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. For single Euphausiid species investigated in a large range of DLh and DoY, we also tested the standard respiration rate for seasonality with Multiple Linear Regression (MLR) and General Additive model (GAM). GAM successfully integrated DLh (r2= 0.563) and DoY (r2= 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. We could not detect DLh or DoY effects in the North Pacific krill Euphausia pacifica, and our findings for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modelling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-01
    Description: Biotic interactions are particularly relevant in stable environments, such as the High Antarctic areas. Among them, predation has a key role in structuring community and population variables, including size-frequency distribution. This study aims to quantify the impact of predation by the notothenioid fish Trematomus bernacchii on the Antarctic scallop Adamussium colbecki- size distribution. We developed a model of this impact that estimates the size distribution of the preyed scallop population, taking into account for the predator- size distribution, sex structure, and daily consumption. Comparing this size distribution of the preyed A. colbecki with the living populations at Terra Nova Bay (Ross Sea, Antarctica), we were able to detect a relevant impact of fish predation. Fish-size frequency resulted to be the major factor shaping preysize structure, with significant differences between predation by males and females. Our findings, given the key role of the two species in the littoral ecosystem of Terra Nova Bay (Antarctic Special Protected Area 161), fall into the framework of ecosystem management of High Antarctic coastal areas, particularly in the actual context of climate change, and increasing anthropogenic impact
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-08
    Description: At the end of their operational life offshore wind farms need to be decommissioned. Up to date only few offshore wind farms were decommissioned, so there is a lack of experience and knowledge and decommissioning processes are largely unknown. Also, relevant stakeholders that might interfere with the decommissioning project are poorly investigated. As source of renewable energy, offshore wind farm decommissioning should be sustainable. This paper outlines a practical concept of integrating the three approaches for a sustainable decommissioning of offshore wind farms. It comprises a stakeholder approach, where relevant stakeholders are identified and analysed, a sustainability approach, in which objectives for sustainable offshore wind farm decommissioning are defined, and a process approach, including the selection, documentation and parametrization of decommissioning processes. The theoretical concept of the integration of the three approaches is outlined first. Thereafter the concept is applied on a case study of offshore wind farm decommissioning.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-06
    Description: Environmental factors can affect the rate of ageing and shape the lifespan in marine ectotherms. The mechanisms and the degree of - environmental influence on aging can best be studied in species with wide ranging biogeographic distribution. One of the biomarkers of physiological ageing is the fluorescent age pigment lipofuscin, which accumulates over lifetime in tissues of bivalves. We compared lipofuscin accumulation rate in muscles and respiratory tissues of the extremely long lived bivalve Arctica islandica from five geographically distinct populations (Northern Norway, White Sea, Kiel Bay, German Bight and Iceland). Maximum investigated chronological age across different populations in the present study differed from 40 years in Kiel Bay to 192 years at Iceland. An inverse association between lipofuscin deposition rate and recorded maximum age was observed through inter-population comparisons. In most cases lipofuscin accumulated exponentially over age in a tissue specific manner. The age specific lipofuscin content was significantly higher in respiratory than muscles tissues in all populations. Cellular lipofuscin granule area can be used as indicator of aging across A. islandica populations with the variance in granule accumulation depending on the annual variations of salinity in different marine regions, but not on the habitat specific thermal envelope.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Sea Research, ELSEVIER SCIENCE BV, 48, pp. 209-216, ISSN: 1385-1101
    Publication Date: 2019-07-16
    Description: Growth, mortality and productivity of the hard clam E. exalbida from Ushuaia Bay, Beagle Channel were investigated. The parameters of the von Bertalanffy growth function were estimated to be H = 73.98 mm, K = 0.180 y 1, t0 = 0.147 y. Maximum individual production amounted to 2.742 g shell free wet mass (SFWM) at 49.5 mm shell height. Animals between 40 mm and 70 mm shell height contribute most to overall population somatic production P of 133.89 g SFWM m-2 y-1. Mean annual biomass B amounted to 1122.69 g SFWM m-2 y-1. Annual P/B ratio and mortality rate Z were estimated to 0.119 y-1 and 0.141 y-1, respectively. Slow growth and low turnover makes this population less suitable for sustainable commercial exploitation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Marine Biology, SPRINGER, 143(3), pp. 477- 484, ISSN: 0025-3162
    Publication Date: 2019-07-16
    Description: Standard metabolic rates of the endemic Antarctic scallop, Adamussium colbecki (Smith, 1902), were measured in austral summer and under simulated winter conditions. Average mass-specific metabolic rates were significantly different between summer (151.17 ± 45.06 µl O2 g-1 h-1) and winter (106.52 ± 39.65 µl O2 g-1 h-1) animals. The overall metabolic rates of A. colbecki are comparable to those of other Antarctic bivalve species, but well below those of temperate scallop species. Data for 24 scallop populations (13 species) from different latitudes give no evidence for elevated metabolic rates in A. colbecki as suggested by the concept of metabolic cold adaptation. A world-wide comparison of metabolic rate and overall growth performance of scallops indicates that in the Antarctic scallop the energetic advantage of low basal metabolism does not counterbalance the disadvantage of the prolonged seasonal period of food shortage.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Sea Research, ELSEVIER SCIENCE BV, 85, pp. 18-28, ISSN: 1385-1101
    Publication Date: 2019-07-16
    Description: The trophic structure of the German Bight soft-bottom benthic community was evaluated for potential changes after cessation of bottom trawling. Species were collected with van-Veen grabs and beam trawls. Trophic position (i.e. nitrogen stable isotope ratios, δ15N) and energy flow (i.e. species metabolism approximated by body mass scaled abundance) of dominant species were compared in trawled areas and an area protected from fisheries for 14 months in order to detect trawling cessation effects by trophic characteristics. At the community level, energy flow was lower in the protected area, but we were unable to detect significant changes in trophic position. At the species level energy flow in the protected area was lower for predating/scavenging species but higher for interface feeders. Species trophic positions of small predators/scavengers were lower and of deposit feeders higher in the protected area. Major reasons for trophic changes after trawling cessation may be the absence of artificial and additional food sources from trawling likely to attract predators and scavengers, and the absence of physical sediment disturbance impacting settlement/survival of less mobile species and causing a gradual shift in food availability and quality. Our results provide evidence that species or community energy flow is a good indicator to detect trawling induced energy-flow alterations in the benthic system, and that in particular species trophic properties are suitable to capture subtle and short-term changes in the benthos following trawling cessation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...