GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-01
    Description: We performed numerical simulations on the micro-dynamics of ice with air inclusions as a second phase. This provides first results of a numerical approach to model dynamic recrystallisation in polyphase crystalline aggregates. Our aim was to investigate the rheological effects of air inclusions and explain the onset of dynamic recrystallisation in the permeable firn. The simulations employ a full field theory crystal plasticity code coupled to codes simulating dynamic recrystallisation processes and predict time-resolved microstructure evolution in terms of lattice orientations, strain distribution, grain sizes and grain boundary network. Results show heterogeneous deformation throughout the simulations and indicate the importance of strain localisation controlled by air inclusions. This strain localisation gives rise to locally increased energies that drive dynamic recrystallisation and induce heterogeneous microstructures that are coherent with natural firn microstructures from EPICA Dronning Maud Land ice coring site in Antarctica. We conclude that although overall strains and stresses in firn are low, strain localisation associated with locally increased strain energies can explain the occurrence of dynamic recrystallisation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-12
    Description: The effect of grain size on strain rate of ice in the upper 2207 m in the North Greenland Eemian Ice Drilling (NEEM) deep ice core was investigated using a rheological model based on the composite flow law of Goldsby and Kohlstedt (1997, 2001). The grain size was described by both a mean grain size and a grain size distribution, which allowed the strain rate to be calculated using two different model end-members: (i) the microscale constant stress model where each grain deforms by the same stress and (ii) the microscale constant strain rate model where each grain deforms by the same strain rate. The model results predict that grain-size-sensitive flow produces almost all of the deformation in the upper 2207 m of the NEEM ice core, while dislocation creep hardly contributes to deformation. The difference in calculated strain rate between the two model end-members is relatively small. The predicted strain rate in the fine-grained Glacial ice (that is, ice deposited during the last Glacial maximum at depths of 1419 to 2207 m) varies strongly within this depth range and, furthermore, is about 4–5 times higher than in the coarser-grained Holocene ice (0–1419 m). Two peaks in strain rate are predicted at about 1980 and 2100 m depth. The prediction that grain-size-sensitive creep is the fastest process is inconsistent with the microstructures in the Holocene age ice, indicating that the rate of dislocation creep is underestimated in the model. The occurrence of recrystallization processes in the polar ice that did not occur in the experiments may account for this discrepancy. The prediction of the composite flow law model is consistent with microstructures in the Glacial ice, suggesting that fine-grained layers in the Glacial ice may act as internal preferential sliding zones in the Greenland ice sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-30
    Description: Disturbances on the centimeter scale in the layering of the NEEM ice core (North Greenland) can be mapped by means of visual stratigraphy as long as the ice does have a visual layering, such as, for example, cloudy bands. Different focal depths of the visual stratigraphy method allow, to a certain extent, a three dimensional view of the structures. In this study we present a structural analysis of the visible folds, discuss characteristics and frequency and present examples of typical fold structures. With this study we aim to quantify the potential impact of small scale folding on the integrity of climate proxy data. We also analyze the structures with regard to the stress environment under which they formed. The structures evolve from gentle waves at about 1700 m to overturned z-folds with increasing depth. Occasionally, the folding causes significant thickening of layers. Their shape indicates that they are passive features and are probably not initiated by rheology differences between layers. Layering is heavily disturbed and tracing of single layers is no longer possible below a depth of 2160 m. Lattice orientation distributions for the corresponding core sections were analyzed where available in addition to visual stratigraphy. The data show axial-plane parallel strings of grains with c.axis orientations that deviate from that of the matrix, which has more or less a single-maximum fabric at the depth where the folding occurs. We conclude from these data that folding is a consequence of deformation along localized shear planes and kink bands. The findings are compared with results from other deep ice cores. The observations presented are supplemented by micro-structural modeling using a crystal plasticity code that reproduces deformation, applying a Fast Fourier Transform (FFT), coupled with ELLE to include dynamic recrystallization processes. The model results reproduce the development of bands of grains with a tilted orientation relative to the single maximum fabric of the matrix and also the associated local deformation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-06
    Description: The EastGRIP (East GReenland Ice core Project) Ice Core is drilled in a highly dynamic area, the North East Greenland Ice Stream (NEGIS), with a surface velocity of 55 m/yr, representing high flow rates in this area. All previous deep ice cores in Greenland were mainly drilled to find undisturbed ice for climate reconstruction. In contrast, the main purpose of this ice core is to increase our understanding of ice flow and linking it to deformation features shown in the physical properties. Some of these deformation features can be made visible using the line scanner device. It scans a polished ice core slab illuminated by an indirect light source (similar to dark field microscopy) and thus makes internal features (e.g. impurities, bubbles, hydrates and partly grain boundaries) visible, creating a 10x165 cm image of the core. Light traveling though the core is reflected and scattered at these features thus causing the camera to detect a bright section where the impurity content is high (“cloudy bands”), whereas ice with a low impurity concentration will not reflect light and contribute a dark layer in the image (“clear bands”). This is used to make layering, i.e. the stratigraphy, visible. Ice from the last glacial period has a well layered stratigraphy resulting from fairly regular annual dust storms in spring to summer. As deformation increases and deformation modes change towards the bottom of the core, these layers will show disturbances and folding. A strong relationship between the δ18O of the water isotopes in the ice core and the impurity concentration, derived from the visual intensity of different layers, can be observed. The correlation of these two makes way for a very precise correlation of the visual stratigraphy and their δ18O age, to analyze differences in deformation modes of ice from different climatic periods. Main deformation in the upper part of the ice sheet is pure shear (stretching along the horizontal and thinning in the vertical) and simple shear in the bottom parts. The gradual change from pure to simple shear is seen in the development of small scale disturbances in the layers, such as wavy patterns. The evolution of these features into z- and s-folds is expected in greater depth. Hereby the layer will deform into a z- or s-shape, overturning a section of the layer. Wavy features, such as the ones seen here, have not been observed in other cores and could be associated to the highly dynamic drill site in NEGIS.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...