GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-03-28
    Description: Thermokarst results from the thawing of ice-rich permafrost and alters the biogeochemical cycling in the Arctic by reworking soil material and redistributing soil organic carbon (SOC) and total nitrogen (TN) along uplands, hillslopes, and lowlands. Understanding the impact of this redistribution is key to better estimating the storage of SOC in permafrost terrains. However, there are insufficient studies quantifying long-term impacts of thaw processes on the distribution of SOC and TN along hillslopes. We address this issue by providing estimates of SOC and TN stocks along the hillslopes of three valleys located on Herschel Island (Yukon, Canada), and by discussing the impact of hillslope thermokarst on the variability of SOC and TN stocks. We found that the average SOC and TN 0–100 cm stocks in the valleys were 26.4 ± 8.9 kg C m-2 and 2.1 ± 0.6 kg N m-2. We highlight the strong variability in the soils physical and geochemical properties within hillslope positions. High SOC stocks were found at the summits, essentially due to burial of organic matter by cryoturbation, and at the toeslopes due to impeded drainage which favored peat formation and SOC accumulation. The average carbon-to‑nitrogen ratio in the valleys was 12.9, ranging from 9.7 to 18.9, and was significantly higher at the summits compared to the backslopes and footslopes (p 〈 0.05), suggesting a degradation of SOC downhill. Carbon and nitrogen contents and stocks were significantly lower on 16% of the sites that were previously affected by hillslope thermokarst (p 〈 0.05). Our results showed that lateral redistribution of SOC and TN due to hillslope thermokarst has a strong impact on the SOC storage in ice-rich permafrost terrains.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-09
    Description: We describe the evolution of coastal retrogressive thaw slumps (RTSs) between 1952 and 2011 along the Yukon Coast, Canada, and provide the first estimate of the contribution of RTSs to the nearshore organic carbon budget in this area. We 1) monitor the evolution of RTSs during the periods 1952-1972 and 1972-2011; 2) calculate the volume of material eroded and stocks of organic carbon (OC) mobilized through slumping – including soil organic carbon (SOC) and dissolved organic carbon (DOC) – and 3) measure the OC fluxes mobilized through slumping between 1972 and 2011. We identified RTSs using high-resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied a spline interpolation on an airborne LiDAR dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73% increase in the number of RTSs between 1952 and 2011. In the study area, RTSs displaced at least 8600*103 m^3 of material, with 53% of ice. We estimated that slumping mobilized 81900*10^3 kg of SOC and 156*10^3 kg of DOC. Since 1972, 17% of the RTSs have displaced 8.6*103 m^3/yr of material, with an average OC flux of 82.5*10^3 kg/yr. This flux represents 0.3% of the OC flux released from coastal retreat; however RTSs have a strong impact on the transformation of OC in the coastal fringe.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-11
    Description: Thermokarst lakes and basins are major components of ice-rich permafrost landscapes in East Siberian coastal lowlands and are regarded as indicators of regional climatic changes. We investigate the temporal and spatial dynamics of a 7.5 km2, partly drained thermokarst basin (alas) using field investigations, remote sensing, Geographic Information Systems (GIS), and sediment analyses. The evolution of the thermokarst basin proceeded in two phases. The first phase started at the Pleistocene/Holocene transition (13 to 12 ka BP) with the initiation of a primary thermokarst lake on the Ice Complex surface. The lake expanded and persisted throughout the early Holocene before it drained abruptly about 5.7 ka BP, thereby creating a 〉 20 m deep alas with residual lakes. The second phase (5.7 ka BP to present) is characterized by alternating stages of lower and higher thermokarst intensity within the alas that were mainly controlled by local hydrological and relief conditions and accompanied by permafrost aggradation and degradation. It included diverse concurrent processes like lake expansion and stepwise drainage, polygonal ice-wedge growth, and the formation of drainage channels and a pingo, which occurred in different parts of the alas. This more dynamic thermokarst evolution resulted in a complex modern thermokarst landscape. However, on the regional scale, the changes during the second evolutionary phase after drainage of the initial thermokarst lakes were less intense than the early Holocene extensive thermokarst development in East Siberian coastal lowlands as a result of a significant regional change to warmer and wetter climate conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...