GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    EDP Sciences ; 2020
    In:  E3S Web of Conferences Vol. 196 ( 2020), p. 01005-
    In: E3S Web of Conferences, EDP Sciences, Vol. 196 ( 2020), p. 01005-
    Abstract: Energetic particle precipitation induces ionization of the atmosphere which initiates a chain of reaction cycles affecting atmospheric composition and dynamics potentially down to surface weather systems. Ionization rates are retrieved based on yield functions or pre-calculated monoenergetic electron flux and energy spectra of precipitated energetic particles. Usually, information about energy spectra is obtained from satellites, balloons, and various ground-based observations. In all cases, some assumptions about spectral distribution for the entire energy range have to be made. As ionization rates are widely used in chemistry-climate models to estimate the atmospheric response to particle forcing, evaluation of the energy spectra is a key task in the solar-terrestrial studies. In this paper, it is shown that possible uncertainties of the ionization rates retrieval based on different spectral functions can lead to large disagreements in the ionization rates, with implications for the modelled response of atmospheric composition and dynamics to electron precipitation.
    Type of Medium: Online Resource
    ISSN: 2267-1242
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 2755680-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    EDP Sciences ; 2019
    In:  E3S Web of Conferences Vol. 127 ( 2019), p. 01005-
    In: E3S Web of Conferences, EDP Sciences, Vol. 127 ( 2019), p. 01005-
    Abstract: In this paper we present the study of polar winter atmospheric response to middle range energy electron precipitations. We analse the variability of the odd nitrogen group NOx, hydrogen group HOx in the polar wonter atmosphere and estimate the ozone (O3) depletion caused by the middle range energy electron precipitations. For the study we exploit 1-D radiative-convective model with interactive neutral and ion chemistry. Ionization rates induced by middle-energy electrons were taken from the CMIP6 (Coupled Model Intercomparison Project Phase 6) solar forcing dataset. The atmospheric response to ionization rates induced by middleenergy electrons during polar night consists of increase of mesospheric HOx by 0.1-0.4 ppbv and NOx by 10-90 ppbv driving ozone losses up to 5% over zonal band of about 75 0 NH.
    Type of Medium: Online Resource
    ISSN: 2267-1242
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 2755680-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Space Weather and Space Climate, EDP Sciences, Vol. 9 ( 2019), p. A39-
    Abstract: We apply the Entire Atmosphere GLobal (EAGLE) model to investigate the upper atmosphere response to the January 2009 sudden stratospheric warming (SSW) event. The model successfully reproduces neutral temperature and total electron content (TEC) observations. Using both model and observational data, we identify a cooling in the tropical lower thermosphere caused by the SSW. This cooling affects the zonal electric field close to the equator, leading to an enhanced vertical plasma drift. We demonstrate that along with a SSW-related wind disturbance, which is the main source to form a dynamo electric field in the ionosphere, perturbations of the ionospheric conductivity also make a significant contribution to the formation of the electric field response to SSW. The post-sunset TEC enhancement and pre-sunrise electron content reduction are revealed as a response to the 2009 SSW. We show that at post-sunset hours the SSW affects low-latitude TEC via a disturbance of the meridional electric field. We also show that the phase change of the semidiurnal migrating solar tide (SW2) in the neutral wind caused by the 2009 SSW at the altitude of the dynamo electric field generation has a crucial importance for the SW2 phase change in the zonal electric field. Such changes lead to the appearance of anomalous diurnal variability of the equatorial electromagnetic plasma drift and subsequent low-latitudinal TEC disturbances in agreement with available observations. Plain Language Summary – Entire Atmosphere GLobal model (EAGLE) interactively calculates the troposphere, stratosphere, mesosphere, thermosphere, and plasmasphere–ionosphere system states and their response to various natural and anthropogenic forcing. In this paper, we study the upper atmosphere response to the major sudden stratospheric warming that occurred in January 2009. Our results agree well with the observed evolution of the neutral temperature in the upper atmosphere and with low-latitude ionospheric disturbances over America. For the first time, we identify an SSW-related cooling in the tropical lower thermosphere that, in turn, could provide additional information for understanding the mechanisms for the generation of electric field disturbances observed at low latitudes. We show that the SSW-related vertical electromagnetic drift due to electric field disturbances is a key mechanism for interpretation of an observed anomalous diurnal development of the equatorial ionization anomaly during the 2009 SSW event. We demonstrate that the link between thermospheric winds and the ionospheric dynamo electric field during the SSW is attained through the modulation of the semidiurnal migrating solar tide.
    Type of Medium: Online Resource
    ISSN: 2115-7251
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 2628166-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: EPJ Web of Conferences, EDP Sciences, Vol. 185 ( 2018), p. 04024-
    Abstract: The phase and structural states of nanocrystalline Fe-based films alloyed with Zr and N, which were prepared by reactive magnetron sputtering under different conditions, magnetic-structure parameters of the films and their static and high-frequency magnetic properties have been studied. The interrelation of static magnetic properties and magnetic-structure parameters with the value of real effective magnetic permeability μ ’ and frequency range, for which the value is unchanged, has been studied.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...