GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 658 ( 2022-2), p. A167-
    Abstract: Context. Aluminium oxide (alumina; Al 2 O 3 ) is a promising candidate as a primary dust condensate in the atmospheres of oxygen-rich evolved stars. Therefore, alumina ‘seed’ particles might trigger the onset of stellar dust formation and of stellar mass loss in the wind. However, the formation of alumina dust grains is not well understood. Aims. We aim to shed light on the initial steps of cosmic dust formation (i.e. nucleation) in oxygen-rich environments via a quantum-chemical bottom-up approach. Methods. Starting with an elemental gas-phase composition, we construct a detailed chemical-kinetic network that describes the formation and destruction of aluminium-bearing molecules and dust-forming (Al 2 O 3 ) n clusters up to the size of dimers ( n = 2) coagulating to tetramers ( n = 4). Intermediary species include the prevalent gas-phase molecules AlO and AlOH as well as Al x O y clusters with x = 1–5, y = 1–6. The resulting extensive network is applied to two model stars, which represent a semi-regular variable and a Mira type, and to different circumstellar gas trajectories, including a non-pulsating outflow and a pulsating model. The growth of larger-sized (Al 2 O 3 ) n clusters with n = 4–10 is described by the temperature-dependent Gibbs free energies of the most favourable structures (i.e. the global minima clusters) as derived from global optimisation techniques and calculated via density functional theory. We provide energies, bond characteristics, electrostatic properties, and vibrational spectra of the clusters as a function of size, n , and compare these to corundum, which corresponds to the crystalline bulk limit ( n → ∞ ). Results. The circumstellar aluminium gas-phase chemistry in oxygen-rich giants is primarily controlled by AlOH and AlO, which are tightly coupled by the reactions AlO+H 2 , AlO+H 2 O, and their reverse. Models of semi-regular variables show comparatively higher AlO abundances, as well as a later onset and a lower efficiency of alumina cluster formation when compared to Mira-like models. The Mira-like models exhibit an efficient cluster production that accounts for more than 90% of the available aluminium content, which is in agreement with the most recent ALMA observations. Chemical equilibrium calculations fail to predict both the alumina cluster formation and the abundance trends of AlO and AlOH in the asymptotic giant branch dust formation zone. Furthermore, we report the discovery of hitherto unreported global minimum candidates and low-energy isomers for cluster sizes n = 7, 9, and 10. A homogeneous nucleation scenario, where Al 2 O 3 monomers are successively added, is energetically viable. However, the formation of the Al 2 O 3 monomer itself represents an energetic bottleneck. Therefore, we provide a bottom-up interpolation of the cluster characteristics towards the bulk limit by excluding the monomer, approximately following an n −1∕3 dependence.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    EDP Sciences ; 2020
    In:  EPJ Web of Conferences Vol. 237 ( 2020), p. 04004-
    In: EPJ Web of Conferences, EDP Sciences, Vol. 237 ( 2020), p. 04004-
    Abstract: Observations of the mesospheric Ni layer have been performed by lidar in January-March 2018 at Kuehlungsborn/Germany (54°N, 12°E). These soundings provide only the second Ni data set after initial observations by Collins et al. at Chatanika/Alaska (65°N, 147°W) [1] . We utilized for the first time a transition from the low-lying excited Ni( 3 D) state at 341 nm. For all soundings, nightly mean peak densities varied between ~280 cm −3 and 450 cm 3 , which is a factor of ~40 less than previously reported for Chatanika [1] . The observed Ni abundance is especially important if compared with the abundance of other metals like Fe, and with their respective abundances in evaporating meteoroids, which form the source of the metal layer in the upper mesosphere. Here, we present exemplarily a sounding from January 8, 2018. Beside the Ni raw data and density profiles we show a temperature profile as measured simultaneously be the co-located RMR lidar and the temperature variation due to gravity waves and tides.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 651 ( 2021-07), p. A82-
    Abstract: Evolved low- to intermediate-mass stars are known to shed their gaseous envelope into a large, dusty, molecule-rich circumstellar nebula which typically develops a high degree of structural complexity. Most of the large-scale, spatially correlated structures in the nebula are thought to originate from the interaction of the stellar wind with a companion. As part of the A TOMIUM large programme, we observed the M-type asymptotic giant branch (AGB) star R Hydrae with the Atacama Large Millimeter/submillimeter Array. The morphology of the inner wind of R Hya, which has a known companion at ∼3500 au, was determined from maps of CO and SiO obtained at high angular resolution. A map of the CO emission reveals a multi-layered structure consisting of a large elliptical feature at an angular scale of ∼10″ that is oriented along the north–south axis. The wind morphology within the elliptical feature is dominated by two hollow bubbles. The bubbles are on opposite sides of the AGB star and lie along an axis with a position angle of ∼115°. Both bubbles are offset from the central star, and their appearance in the SiO channel maps indicates that they might be shock waves travelling through the AGB wind. An estimate of the dynamical age of the bubbles yields an age of the order of 100 yr, which is in agreement with the previously proposed elapsed time since the star last underwent a thermal pulse. When the CO and SiO emission is examined on subarcsecond angular scales, there is evidence for an inclined, differentially rotating equatorial density enhancement, strongly suggesting the presence of a second nearby companion. The position angle of the major axis of this disc is ∼70° in the plane of the sky. We tentatively estimate that a lower limit on the mass of the nearby companion is ∼0.65  M ⊙ on the basis of the highest measured speeds in the disc and the location of its inner rim at ∼6 au from the AGB star.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...