GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EDP Sciences  (84)
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 659 ( 2022-03), p. A84-
    Abstract: Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5   M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150  M ⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200  M ⊙ and effective aligned spin 0.8 at 0.056 Gpc −3 yr −1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc −3 yr −1 .
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 648 ( 2021-04), p. A23-
    Abstract: The flat spectrum radio quasar (FSRQ) PKS 1510−089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E   〉  100 GeV) γ rays. The VHE γ -ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE γ -ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of ∼20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE γ -ray spectrum of PKS 1510–089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R -band observations with ATOM revealed a counterpart of the γ -ray flare, even though the detailed flux evolution differs from the VHE γ -ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE γ -ray flare. In the high-energy (HE, E   〉  100 MeV) γ -ray band, only a moderate flux increase was observed with Fermi -LAT, while the HE γ -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the γ -ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE γ rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 620 ( 2018-12), p. A66-
    Abstract: Aims. We report on the measurement and investigation of pulsed high-energy γ -ray emission from the Vela pulsar, PSR B0833−45, based on observations with the largest telescope of H.E.S.S., CT5, in monoscopic mode, and on data obtained with the Fermi -LAT. Methods. Data from 40.3 h of observations carried out with the H.E.S.S. II array from 2013 to 2015 have been used. A dedicated very low-threshold event reconstruction and analysis pipeline was developed to achieve the lowest possible energy threshold. Eight years of Fermi -LAT data were analysed and also used as reference to validate the CT5 telescope response model and analysis methods. Results. A pulsed γ -ray signal at a significance level of more than 15 σ is detected from the P2 peak of the Vela pulsar light curve. Of a total of 15 835 events, more than 6000 lie at an energy below 20 GeV, implying a significant overlap between H.E.S.S. II-CT5 and the Fermi -LAT. While the investigation of the pulsar light curve with the LAT confirms characteristics previously known up to 20 GeV in the tens of GeV energy range, CT5 data show a change in the pulse morphology of P2, i.e. an extreme sharpening of its trailing edge, together with the possible onset of a new component at 3.4 σ significance level. Assuming a power-law model for the P2 spectrum, an excellent agreement is found for the photon indices (Γ ≃ 4.1) obtained with the two telescopes above 10 GeV and an upper bound of 8% is derived on the relative offset between their energy scales. Using data from both instruments, it is shown however that the spectrum of P2 in the 10–100 GeV has a pronounced curvature; this is a confirmation of the sub-exponential cut-off form found at lower energies with the LAT. This is further supported by weak evidence of an emission above 100 GeV obtained with CT5. In contrast, converging indications are found from both CT5 and LAT data for the emergence of a hard component above 50 GeV in the leading wing (LW2) of P2, which possibly extends beyond 100 GeV. Conclusions. The detection demonstrates the performance and understanding of CT5 from 100 GeV down to the sub-20 GeV domain, i.e. unprecedented low energy for ground-based γ -ray astronomy. The extreme sharpening of the trailing edge of the P2 peak found in the H.E.S.S. II light curve of the Vela pulsar and the possible extension beyond 100 GeV of at least one of its features, LW2, provide further constraints to models of γ -Ray emission from pulsars.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 644 ( 2020-12), p. A112-
    Abstract: The unidentified very-high-energy (VHE; E 〉 0.1 TeV) γ -ray source, HESS J1826−130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady γ -ray flux from HESS J1826−130, which appears extended with a half-width of 0.21° ± 0.02 stat ° ± 0.05 sys °. The source spectrum is best fit with either a power-law function with a spectral index Γ = 1.78 ± 0.10 stat ± 0.20 sys and an exponential cut-off at 15.2 −3.2 +5.5 TeV, or a broken power-law with Γ 1 = 1.96 ± 0.06 stat ± 0.20 sys , Γ 2 = 3.59 ± 0.69 stat ± 0.20 sys for energies below and above E br = 11.2 ± 2.7 TeV, respectively. The VHE flux from HESS J1826−130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825−137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826−130 VHE emission related to PSR J1826−1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826−130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to ≳200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 653 ( 2021-09), p. A152-
    Abstract: Aims. The identification of PeVatrons, hadronic particle accelerators reaching the knee of the cosmic ray spectrum (few  ×  10 15  eV), is crucial to understand the origin of cosmic rays in the Galaxy. We provide an update on the unidentified source HESS J1702-420, a promising PeVatron candidate. Methods. We present new observations of HESS J1702-420 made with the High Energy Stereoscopic System (H.E.S.S.), and processed using improved analysis techniques. The analysis configuration was optimized to enhance the collection area at the highest energies. We applied a three-dimensional likelihood analysis to model the source region and adjust non thermal radiative spectral models to the γ -ray data. We also analyzed archival Fermi Large Area Telescope data to constrain the source spectrum at γ -ray energies 〉 10 GeV. Results. We report the detection of γ -rays up to 100 TeV from a specific region of HESS J1702-420, which is well described by a new source component called HESS J1702-420A that was separated from the bulk of TeV emission at a 5.4 σ confidence level. The power law γ -ray spectrum of HESS J1702-420A extends with an index of Γ = 1.53 ± 0.19 stat  ± 0.20 sys and without curvature up to the energy band 64−113 TeV, in which it was detected by H.E.S.S. at a 4.0 σ confidence level. This makes HESS J1702-420A a compelling candidate site for the presence of extremely high energy cosmic rays. With a flux above 2 TeV of (2.08 ± 0.49 stat  ± 0.62 sys ) × 10 −13  cm −2  s −1 and a radius of (0.06 ± 0.02 stat  ± 0.03 sys )°, HESS J1702-420A is outshone – below a few tens of TeV – by the companion HESS J1702-420B. The latter has a steep spectral index of Γ = 2.62 ± 0.10 stat  ± 0.20 sys and an elongated shape, and it accounts for most of the low-energy HESS J1702-420 flux. Simple hadronic and leptonic emission models can be well adjusted to the spectra of both components. Remarkably, in a hadronic scenario, the cut-off energy of the particle distribution powering HESS J1702-420A is found to be higher than 0.5 PeV at a 95% confidence level. Conclusions. For the first time, H.E.S.S. resolved two components with significantly different morphologies and spectral indices, both detected at 〉 5 σ confidence level, whose combined emissions result in the source HESS J1702-420. We detected HESS J1702-420A at a 4.0 σ confidence level in the energy band 64−113 TeV, which brings evidence for the source emission up to 100 TeV. In a hadronic emission scenario, the hard γ -ray spectrum of HESS J1702-420A implies that the source likely harbors PeV protons, thus becoming one of the most solid PeVatron candidates detected so far in H.E.S.S. data. However, a leptonic origin of the observed TeV emission cannot be ruled out either.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 639 ( 2020-07), p. A42-
    Abstract: Here we report the results of the first ever contemporaneous multi-wavelength observation campaign on the BL Lac object PKS 2155−304 involving Swift , NuSTAR , Fermi -LAT, and H.E.S.S. The use of these instruments allows us to cover a broad energy range, which is important for disentangling the different radiative mechanisms. The source, observed from June 2013 to October 2013, was found in a low flux state with respect to previous observations but exhibited highly significant flux variability in the X-rays. The high-energy end of the synchrotron spectrum can be traced up to 40 keV without significant contamination by high-energy emission. A one-zone synchrotron self-Compton model was used to reproduce the broadband flux of the source for all the observations presented here but failed for previous observations made in April 2013. A lepto-hadronic solution was then explored to explain these earlier observational results.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 617 ( 2018-09), p. A73-
    Abstract: Context. NGC 253 is one of only two starburst galaxies found to emit γ -rays from hundreds of MeV to multi-TeV energies. Accurate measurements of the very-high-energy (VHE; E 〉 100 GeV) and high-energy (HE; E 〉 60 MeV) spectra are crucial to study the underlying particle accelerators, probe the dominant emission mechanism(s) and to study cosmic-ray interaction and transport. Aims. The measurement of the VHE γ -ray emission of NGC 253 published in 2012 by H.E.S.S. was limited by large systematic uncertainties. Here, the most up to date measurement of the γ -ray spectrum of NGC 253 is investigated in both HE and VHE γ -rays. Assuming a hadronic origin of the γ -ray emission, the measurement uncertainties are propagated into the interpretation of the accelerated particle population. Methods. The data of H.E.S.S. observations are reanalysed using an updated calibration and analysis chain. The improved Fermi –LAT analysis employs more than 8 yr of data processed using pass 8. The cosmic-ray particle population is evaluated from the combined HE–VHE γ -ray spectrum using NAIMA in the optically thin case. Results. The VHE γ -ray energy spectrum is best fit by a power-law distribution with a flux normalisation of (1.34 ± 0.14 stat ± 0.27 sys ) × 10 −13 cm −2 s −1 TeV 1 at 1 TeV – about 40% above, but compatible with the value obtained in Abramowski et al. (2012). The spectral index Γ = 2.39 ± 0.14 stat ± 0.25 sys is slightly softer than but consistent with the previous measurement within systematic errors. In the Fermi energy range an integral flux of F ( E 〉 60 MeV) = (1.56 ± 0.28 stat ± 0.15 sys ) × 10 −8 cm −2 s −1 is obtained. At energies above ∼3 GeV the HE spectrum is consistent with a power-law ranging into the VHE part of the spectrum measured by H.E.S.S. with an overall spectral index Γ = 2.22 ± 0.06 stat . Conclusions. Two scenarios for the starburst nucleus are tested, in which the gas in the starburst nucleus acts as either a thin or a thick target for hadronic cosmic rays accelerated by the individual sources in the nucleus. In these two models, the level to which NGC 253 acts as a calorimeter is estimated to a range of f cal = 0.1 to 1 while accounting for the measurement uncertainties. The presented spectrum is likely to remain the most accurate measurements until the Cherenkov Telescope Array (CTA) has collected a substantial set of data towards NGC 253.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 635 ( 2020-3), p. A167-
    Abstract: Aims. Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV 〈 E 〈 100 GeV) γ -ray emitters. η Car is the most prominent member of this object class and is confirmed to emit phase-locked HE γ rays from hundreds of MeV to ~100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E 〉 100 GeV) γ -ray emission from η Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.). Methods. The region around η Car was observed with H.E.S.S. between orbital phase p = 0.78−1.10, with a closer sampling at p ≈ 0.95 and p ≈ 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the η Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions. Results. H.E.S.S. detected VHE γ -ray emission from the direction of η Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE γ rays agree within statistical and systematic errors before and after periastron. The γ -ray spectrum extends up to at least ~400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 633 ( 2020-01), p. A162-
    Abstract: Context. Flat-spectrum radio-quasars (FSRQs) are rarely detected at very high energies ( E  ≥ 100 GeV) due to their low-frequency-peaked spectral energy distributions. At present, only six FSRQs are known to emit very high-energy (VHE) photons, representing only 7% of the VHE extragalactic catalog, which is largely dominated by high-frequency-peaked BL Lacertae objects. Aims. Following the detection of MeV–GeV γ -ray flaring activity from the FSRQ PKS 0736+017 ( z  = 0.189) with Fermi -LAT, the H.E.S.S. array of Cherenkov telescopes triggered target-of-opportunity (ToO) observations on February 18, 2015, with the goal of studying the γ -ray emission in the VHE band. Methods. H.E.S.S. ToO observations were carried out during the nights of February 18, 19, 21, and 24, 2015. Together with Fermi -LAT, the multi-wavelength coverage of the flare includes Swift observations in soft X-ray and optical-UV bands, and optical monitoring (photometry and spectro-polarimetry) by the Steward Observatory, and the ATOM, the KAIT, and the ASAS-SN telescopes. Results. VHE emission from PKS 0736+017 was detected with H.E.S.S. only during the night of February 19, 2015. Fermi -LAT data indicate the presence of a γ -ray flare, peaking at the time of the H.E.S.S. detection, with a flux doubling timescale of around six hours. The γ -ray flare was accompanied by at least a 1 mag brightening of the non-thermal optical continuum. No simultaneous observations at longer wavelengths are available for the night of the H.E.S.S. detection. The γ -ray observations with H.E.S.S. and Fermi -LAT are used to put constraints on the location of the γ -ray emitting region during the flare: it is constrained to be just outside the radius of the broad-line region r B L R with a bulk Lorentz factor Γ ≃ 20, or at the level of the radius of the dusty torus r torus with Γ ≃ 60. Conclusions. PKS 0736+017 is the seventh FSRQ known to emit VHE photons, and at z  = 0.189 is the nearest so far. The location of the γ -ray emitting region during the flare can be tightly constrained thanks to opacity, variability, and collimation arguments.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 633 ( 2020-1), p. A102-
    Abstract: Context. PSR B1259–63/LS 2883 is a gamma-ray binary system consisting of a pulsar in an eccentric orbit around a bright Oe stellar-type companion star that features a dense circumstellar disc. The bright broad-band emission observed at phases close to periastron offers a unique opportunity to study particle acceleration and radiation processes in binary systems. Observations at gamma-ray energies constrain these processes through variability and spectral characterisation studies. Aims. The high- and very-high-energy (HE, VHE) gamma-ray emission from PSR B1259–63/LS 2883 around the times of its periastron passage are characterised, in particular, at the time of the HE gamma-ray flares reported to have occurred in 2011, 2014, and 2017. Short-term and average emission characteristics of PSR B1259–63/LS 2883 are determined. Super-orbital variability is searched for in order to investigate possible cycle-to-cycle VHE flux changes due to different properties of the companion star’s circumstellar disc and/or the conditions under which the HE gamma-ray flares develop. Methods. Spectra and light curves were derived from observations conducted with the H.E.S.S-II array in 2014 and 2017. Phase-folded light curves are compared with the results obtained in 2004, 2007, and 2011. Fermi -LAT observations from 2010/11, 2014, and 2017 are analysed. Results. A local double-peak profile with asymmetric peaks in the VHE light curve is measured, with a flux minimum at the time of periastron t p and two peaks coinciding with the times at which the neutron star crosses the companion’s circumstellar disc (~ t p ± 16 d). A high VHE gamma-ray flux is also observed at the times of the HE gamma-ray flares (~ t p + 30 d) and at phases before the first disc crossing (~ t p − 35 d). The spectral energy range now extends to below 200 GeV and up to ~45 TeV. Conclusions. PSR B1259–63/LS 2883 displays periodic flux variability at VHE gamma-rays without clear signatures of super-orbital modulation in the time span covered by the monitoring of the source with the H.E.S.S. telescopes. This flux variability is most probably caused by the changing environmental conditions, particularly at times close to periastron passage at which the neutron star is thought to cross the circumstellar disc of the companion star twice. In contrast, the photon index remains unchanged within uncertainties for about 200 d around periastron. At HE gamma-rays, PSR B1259–63/LS 2883 has now been detected also before and after periastron, close to the disc crossing times. Repetitive flares with distinct variability patterns are detected in this energy range. Such outbursts are not observed at VHEs, although a relatively high emission level is measured. The spectra obtained in both energy regimes displays a similar slope, although a common physical origin either in terms of a related particle population, emission mechanism, or emitter location is ruled out.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...