GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Earth sciences -- Data processing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (273 pages)
    Edition: 1st ed.
    ISBN: 9789401786423
    DDC: 363.70028563
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- About the Editors -- Part I: General -- Chapter 1: Computational Intelligence Techniques and Applications -- 1.1 Introduction -- 1.2 Neural Networks -- 1.2.1 Basic Principles -- 1.2.2 Applications -- 1.3 Evolutionary Computation -- 1.3.1 Basic Principles -- 1.3.2 Applications -- 1.4 Swarm Intelligence -- 1.4.1 Basic Principles -- 1.4.2 Applications -- 1.5 Artificial Immune Systems -- 1.5.1 Basic Principles -- 1.5.2 Applications -- 1.6 Fuzzy Systems -- 1.6.1 Basic Principles -- 1.6.2 Applications -- 1.7 Conclusions -- References -- Part II: Classical Intelligence Techniques in Earth and Environmental Sciences -- Chapter 2: Vector Autoregression (VAR) Modeling and Forecasting of Temperature, Humidity, and Cloud Coverage -- 2.1 Introduction -- 2.2 Materials and Methods -- 2.2.1 Data -- 2.2.2 Test of Stationarity -- 2.2.2.1 Augmented Dickey-Fuller Test -- 2.2.2.2 Phillips-Perron Test -- 2.2.2.3 Kwiatkowski-Phillips-Schmidt-Shin Test -- 2.2.3 Vector Autoregression Model -- 2.2.3.1 Selection of Variables Under Study -- 2.2.3.2 Making a Model of Order p (Arbitrary) -- 2.2.3.3 Determining the Value of Order p -- 2.2.3.4 Estimating Parameters -- 2.2.3.5 Diagnostic Checking -- 2.2.3.6 Cross Validity of the Fitted VAR Models -- 2.2.3.7 Forecasting -- 2.2.3.8 Forecast Error Variance Decomposition -- 2.2.3.9 Impulse Response Function -- 2.3 Results and Discussion -- 2.3.1 Descriptive Statistics -- 2.3.2 Tests for Stationarity -- 2.3.3 Selection of Variables Under Study -- 2.3.4 Selection of Order (p) -- 2.3.5 Estimation of Parameters -- 2.3.6 Diagnostic Checking -- 2.3.7 Cross Validity of the Fitted VAR Models -- 2.3.8 Forecast Error Variance Decomposition -- 2.3.9 Impulse Response Function -- 2.3.10 Forecasting Using VAR(8) Model -- 2.4 Conclusion -- References. , Chapter 3: Exploring the Behavior and Changing Trends of Rainfall and Temperature Using Statistical Computing Techniques -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 K-Means Clustering -- 3.2.2 Mann-Kendall Trend Test -- 3.2.3 Seasonal Mann-Kendall Trend Test -- 3.2.4 Sen´s Slope Estimator -- 3.2.5 Naive Model -- 3.2.6 Autoregressive Integrated Moving Average Model -- 3.2.7 Random Walk with Drift -- 3.2.8 Theta Model -- 3.2.9 Wilcoxon Test -- 3.2.10 RMS Error -- 3.2.11 SMAPE -- 3.2.12 Materials Used During the Study -- 3.2.13 Data Used in the Study -- 3.3 Results and Discussion -- 3.3.1 Change in Temperature -- 3.3.2 Changes in Monthly Total Rainfall -- 3.3.3 Clustering of Rainfall -- 3.3.4 Comparison of Different Time Series Forecasting Models -- 3.4 Concluding Remarks -- References -- Chapter 4: Time Series Model Building and Forecasting on Maximum Temperature Data -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Time Series Data on Temperature -- 4.2.2 Testing Stationarity of the Time Series -- 4.2.3 Box-Jenkins Modeling Strategy -- 4.2.3.1 Identification of Order for the SARIMA Structure -- 4.2.3.2 Parameter Estimation of the SARIMA Model -- 4.2.3.3 Diagnostic Checking of the Fitted Model -- 4.2.3.4 Forecasting of the Study Variable -- 4.3 Results and Discussion -- 4.3.1 Testing Stationarity Status of Temperature -- 4.3.2 Model Building and Forecasting -- 4.3.2.1 Identification of Parameters Value of the SARIMA Structure -- 4.3.2.2 Estimation of Parameters for Selected SARMA Models -- 4.3.2.3 Diagnostic Checking for Estimated SARMA Models -- 4.3.2.4 Forecasting of Temperature Using Selected SARMA Models -- 4.4 Conclusion -- References -- Chapter 5: GIS Visualization of Climate Change and Prediction of Human Responses -- 5.1 Introduction -- 5.2 Method and Materials. , 5.3 Wet Bulb (Twb) and Globe (Tg) Temperature as Physical Model to Predict WBGT -- 5.4 WBGT and Tolerance Time a Tool for Climate Change Assessment -- 5.4.1 Tolerance Time -- 5.5 Discussion -- 5.6 Conclusion -- References -- Part III: Probabilistic and Transforms Intelligence Techniques in Earth and Environmental Sciences -- Chapter 6: Markov Chain Analysis of Weekly Rainfall Data for Predicting Agricultural Drought -- 6.1 Introduction -- 6.2 Study Area and Method -- 6.2.1 Climatic Condition of the Barind Region -- 6.2.2 Markov Chain Agricultural Drought Index -- 6.2.3 Test of Null Hypothesis -- 6.2.4 Mapping the Spatial Extent of Agricultural Drought -- 6.3 Results and Discussion -- 6.3.1 Temporal and Spatial Characteristics of Agricultural Drought -- 6.3.2 Probability of Wet Spell -- 6.3.3 Relative Frequency of Occurrence of Agricultural Drought -- 6.3.4 Result of Hypothesis Testing -- 6.4 Conclusions -- References -- Chapter 7: Forecasting Tropical Cyclones in Bangladesh: A Markov Renewal Approach -- 7.1 Introduction -- 7.2 Data Sources and Description -- 7.3 Methods -- 7.3.1 Markov Renewal Process and Its Properties -- 7.3.2 Likelihood Construction and Parameter Estimation -- 7.3.3 Cross-State Prediction -- 7.3.4 Asymptotic Behavior: Mean Recurrence Time -- 7.4 Results and Discussion -- 7.5 Conclusion -- References -- Chapter 8: Performance of Wavelet Transform on Models in Forecasting Climatic Variables -- 8.1 Introduction -- 8.2 Wavelet Transformation -- 8.3 Data Processing and Forecasting Framework -- 8.3.1 Approach-1 -- 8.3.2 Approach-2 -- 8.4 Comparison of Forecasting Performance -- 8.5 Empirical Results -- 8.5.1 Forecasting Based on Original Series -- 8.5.2 Forecasting Based on Decomposed Series Using Wavelet Transformation -- 8.5.2.1 Approach-1 -- 8.5.2.2 Approach-2 -- 8.5.3 Comparison -- 8.6 Conclusions -- References. , Chapter 9: Analysis of Inter-Annual Climate Variability Using Discrete Wavelet Transform -- 9.1 Introduction -- 9.2 Multiband Decomposition of Climate Signals -- 9.2.1 Fourier-Based Filter Bank and Its Limitations -- 9.2.2 Wavelet-Based Filter Bank -- 9.3 Annual Cycle Extraction -- 9.4 Results and Discussion -- 9.5 Conclusions -- References -- Part IV: Hybrid Intelligence Techniques in Earth and Environmental Sciences -- Chapter 10: Modeling of Suspended Sediment Concentration Carried in Natural Streams Using Fuzzy Genetic Approach -- 10.1 Introduction -- 10.2 Methods -- 10.2.1 Fuzzy Logic -- 10.2.2 Genetic Algorithm -- 10.2.3 Fuzzy Genetic Approach -- 10.2.4 Adaptive Network-Based Fuzzy Inference System -- 10.2.5 Neural Networks -- 10.2.6 Sediment Rating Curve -- 10.3 Applications and Results -- 10.4 Conclusion -- References -- Chapter 11: Prediction of Local Scour Depth Downstream of Bed Sills Using Soft Computing Models -- 11.1 Introduction -- 11.2 Material and Methods -- 11.2.1 Physical Definition of Scouring -- 11.2.2 Scouring Prediction at Bed Sills -- 11.2.2.1 Empirical Equations -- 11.2.2.2 Genetic Algorithm -- 11.2.2.3 Gene Expression Programming -- 11.2.2.4 M5 Tree Model -- 11.2.2.5 Data Set -- 11.2.2.6 Selection of Input and Output Parameters -- 11.2.3 Experimental Setup -- 11.3 Results -- 11.3.1 GA Model -- 11.3.2 GEP Model -- 11.3.3 M5 Tree Equations -- 11.4 Performance Analysis of Results -- 11.5 Conclusions -- References -- Chapter 12: Evaluation of Wavelet-Based De-noising Approach in Hydrological Models Linked to Artificial Neural Networks -- 12.1 Introduction -- 12.2 Study Area and Data -- 12.3 Materials and Methods -- 12.3.1 Wavelet De-noising Procedure -- 12.3.2 Artificial Neural Network and Efficiency Criteria -- 12.4 Results and Discussion -- 12.4.1 Ad Hoc ANN -- 12.4.1.1 Stream-Flow Forecasting -- 12.4.1.2 SSL Forecasting. , 12.4.2 Hybrid ANN-Wavelet -- 12.4.2.1 Wavelet-Based De-noising Approach -- 12.4.2.2 Stream-Flow Forecasting -- 12.4.2.3 SSL Forecasting -- 12.4.3 Comparison of Models -- 12.5 Concluding Remarks -- References -- Chapter 13: Evaluation of Mathematical Models with Utility Index: A Case Study from Hydrology -- 13.1 Introduction -- 13.2 Study Area and Data Used -- 13.3 Models -- 13.3.1 LLR Model -- 13.3.2 ANN and ANFIS Models -- 13.3.3 Support Vector Machines -- 13.3.4 Wavelet Hybrid Models -- 13.3.5 Index of Model Utility (U) -- 13.4 Results and Discussions -- 13.4.1 Comparison of Data Models Using Utility Index -- 13.4.2 Comparison of Data Models Using Statistical Indices -- 13.5 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...