GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Chromatographic analysis. ; Chemistry, Analytic -- Technique. ; Sustainable development. ; Electronic books.
    Description / Table of Contents: This book examines counter-current, ion size exclusion, supercritical fluids, high-performance thin layers, and gas and size exclusion chromatographic techniques used to separate and purify organic and inorganic analytes. Includes green prep methods and more.
    Type of Medium: Online Resource
    Pages: 1 online resource (220 pages)
    Edition: 1st ed.
    ISBN: 9789400777354
    DDC: 543.8
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- Chapter-1 -- Saving Solvents in Chromatographic Purifications: The Counter-Current Chromatography Technique -- 1.1 Introduction -- 1.2 CCC Theory -- 1.2.1 High Loadability -- 1.2.2 Scale up Capability -- 1.3 Instrumentation -- 1.3.1 Hydrostatic and Hydrodynamic Instruments -- 1.3.2 Liquid Systems -- 1.4 Counter Current Chromatography, a Green Process -- 1.4.1 Saving Solvents -- 1.4.2 Improving Process Parameters -- 1.4.3 Injecting Crude Samples -- 1.4.4 Greener Solvents -- 1.5 Counter Current Chromatography, a Tool for Green Chemistry Development -- 1.5.1 Natural Products -- 1.5.2 Solute Partition Coefficient Determination -- 1.6 Conclusion -- References -- Chapter-2 -- Ion Size Exclusion Chromatohtaphy on Hypercrosslinked Polystyrene Sorbents as a Green Technology of Separating Mineral Elecyrolites -- 2.1 Introduction -- 2.2 Nanoporous Hypercrosslinked Polystyrene Sorbents -- 2.3 Brief Description of Chromatographic Experiments -- 2.4 Dimensions of Hydrated Ions -- 2.5 Separation of Electrolytes on Nanoporous Hypercrosslinked Sorbents -- 2.6 Basic Features of Size Exclusion Chromatography -- 2.7 Conception of "Ideal Separation Process" -- 2.8 Selectivity of Electrolyte Separation Process -- 2.9 Influence of the Electrolyte Concentration on the Selectivity of Separat -- 2.10 "Acid Retardation", "Base Retardation" and "Salt Retardation" Phenomena -- 2.11 Other Convincing Proofs of Separating Electrolytes via Exclusion Mechanism -- 2.12 Do we Really Need Sorbent Functional Groups to Separate Electrolytes? -- 2.13 Productivity of the Ion Size Exclusion Process -- 2.14 Ion Size Exclusion-Green Technology -- 2.15 Conclusion -- References -- Chapter-3 -- Supercritical Fluid Chromatography: A Green Approach for Separation and Purification of Organic and Inorganic Analytes. , 3.1 Introduction to Green Chemistry and Supercritical Fluid Chromatography -- 3.2 Super Critical Fluids -- 3.2.1 Supercritical Fluid Extraction (SFE) -- 3.3 Supercritical Fluid Chromatography (SFC): An Overview -- 3.3.1 History of Development of Supercritical Fluid Chromatography -- 3.3.2 Instrumentation -- 3.3.2.1 Advantages and Disadvantages of Supercritical Fluid Chromatography -- 3.3.3 Properties of SFC compared to GC and HPLC -- 3.4 Industrial Applications of SCFs and SFCs -- 3.5 Conclusion -- References -- Chapter-4 -- High Performance Thin-Layer Chromatography -- 4.1 Introduction -- 4.2 High Performance Thin-Layer Chromatography -- 4.3 Sample Preparation in HPTLC -- 4.4 Green Separation Modalities in HPTLC -- 4.4.1 "Three R" Philosophy-Replacement of Toxic Solvents with Environmental Friendly Mobi -- 4.4.1.1 Reversed-Phase Chromatography -- 4.4.1.2 Hydrophilic Interaction Chromatography (HILIC) in HPTLC -- 4.4.1.3 Salting-Out Chromatography in HPTLC -- 4.5 Conclusion -- References -- Chapter-5 -- Green Techniques in Gas Chromatography -- 5.1 Introduction -- 5.2 Sample Preparation -- 5.2.1 Direct Methods Without Sample Preparation -- 5.2.2 Solventless Sample Preparation Techniques -- 5.2.2.1 Solid Phase Extraction -- 5.2.2.2 Vapor-Phase Extraction -- 5.2.2.3 Thermal Desorption (TD)/Thermal Extraction (TE) -- 5.2.2.4 Membrane Extraction -- 5.2.3 Sample Preparation Using Environmentally Friendly Solvents -- 5.2.3.1 Supercritical Fluid Extraction (SFE) -- 5.2.3.2 Subcritical Water Extraction (SWE) -- 5.2.3.3 Ionic Liquids (ILs) -- 5.2.3.4 Cloud-Point Extraction -- 5.2.4 Assisted Solvent Extraction -- 5.3 Column Considerations for Green Gas Chromatography -- 5.4 Carrier Gas Considerations for Green Gas Chromatography -- 5.5 Coupling GC with Other Analytical Tools -- 5.6 On-Site Analysis. , 5.7 Conclusion -- References -- Chapter-6 -- Preparation and Purification of Garlic-Derived Organosulfur Compound Allicin by Green Methodologies -- 6.1 Introduction -- 6.2 Green RP-HPLC Purification of the Allicin -- 6.3 Characterization of the Allicin by Green Methodologies -- 6.4 Allicin in Different Garlic Extract by Green RP-HPLC -- 6.5 Allicin Green Chemical Synthesis -- 6.6 Stability of Allicin -- 6.7 Conclusions -- References -- Chapter-7 -- Green Sample Preparation Focusing on Organic Analytes in Complex Matrices -- 7.1 Introduction -- 7.1.1 Trends in Green Analytical Chemistry -- 7.1.2 Green Techniques for Sample Preparation -- 7.1.2.1 Reduction and Solvent Replacement -- Supercritical Fluid Extraction -- Membranes -- 7.1.2.2 Solvent Elimination -- Solid Phase Extraction (SPE) -- Matrix Solid-Phase Dispersion (MSPD) -- Sorptive Extraction Techniques -- Solid Phase Microextraction (SPME) -- Stir-Bar Sorptive Extraction -- 7.2 Conclusions -- References -- Chapter-8 -- Studies Regarding the Optimization of the Solvent Consumption in the Determination of Organochlor -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results -- 8.4 Discussions -- 8.4.1 TRM1 -- 8.4.2 TRM2 -- 8.5 Conclusions -- References -- Chapter-9 -- Size Exclusion Chromatography a Useful Technique For Speciation Analysis of Polydimethylsiloxanes -- 9.1 Introduction to SEC -- 9.2 SEC Retention Mechanisms -- 9.2.1 Ideal Size Exclusion Mechanism -- 9.2.2 Non-Ideal Size Exclusion Mechanism -- 9.3 The Stationary Phase in SEC -- 9.4 The Mobile Phase in SEC -- 9.5 Analytical Problems -- 9.6 Methods for Column Calibration -- 9.7 Applications of SEC Biomedical and Pharmaceutical -- 9.7.1 SEC as a Useful Technique for Linear Polydimethylsiloxanes Speciation Analysis. , 9.8 Methodology for Linear Polydimethylsiloxanes Speciation Analysis -- 9.8.1 Mobile Phase Selection -- 9.8.2 Stationary Phase Selection -- 9.8.3 Column Conditions -- 9.8.4 Column Calibration -- 9.8.5 Separation of Polydimethylsiloxanes -- 9.9 Conclusions -- References -- Erratum -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Botanical chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9789811566073
    Series Statement: Environmental and Microbial Biotechnology Series
    DDC: 579
    Language: English
    Note: Intro -- Preface -- Contents -- 1: Application of Microbial Biosurfactants in the Food Industry -- 1.1 Surfactants in the Food Industry -- 1.1.1 Food Additives -- 1.1.2 Biosurfactants as Food Preservatives -- 1.1.2.1 Emulsifying Agents -- 1.1.2.2 Antibiofilm Agents -- 1.1.2.3 Antimicrobial Agents -- 1.1.2.4 Antioxidant Agents -- 1.1.3 Industrial Prospects -- References -- 2: Microbial Biosurfactants for Contamination of Food Processing -- 2.1 Introduction -- 2.1.1 Food Contamination -- 2.1.2 Contamination in Food Processing -- 2.2 Microbial Biosurfactants Use in Food Processing -- 2.2.1 Glycolipids -- 2.2.2 Lipopeptides -- 2.3 Application of Microbial Surfactants in Food Processing -- 2.3.1 Biofilm Control -- 2.3.2 Food Preservatives -- 2.4 Concluding Remarks -- References -- 3: Antioxidant Biosurfactants -- 3.1 Introduction -- 3.2 Sources of Biosurfactants -- 3.2.1 Plant-Based Biosurfactants -- 3.2.1.1 Saponins -- Structure, Properties, and Types of Saponins -- Saponins as a Biosurfactants -- 3.2.2 Microbe-Based Biosurfactants -- 3.2.2.1 Types of Microbial Surfactants -- Glycolipids -- Rhamnolipids -- Sophorolipids -- Trehalolipids -- Succinoyl Trehalolipids -- Cellobiose Lipids -- Mannosylerythritol Lipids -- Xylolipids -- Mannose Lipids -- Lipopeptides or Lipoprotein -- Bacillus-Related Lipopeptides -- Surfactin -- Fengycin -- Iturin -- Kurstakins -- Lichenysins -- Pseudomonas-Related Lipopeptides -- Actinomycetes-Related lipopeptides -- Fungal-Related Lipopeptides -- Phospholipids, Fatty Acids (Mycolic Acids), and Neutral Lipids -- Polymeric Surfactants -- Particulate Surfactants -- 3.3 Factors Affecting Biosurfactant Production -- 3.3.1 pH and Temperature -- 3.3.2 Aeration and Agitation -- 3.3.3 Effect of Salt Salinity -- 3.3.4 Optimization of Cultivation Medium -- 3.3.4.1 Effect of Carbon Source -- 3.3.4.2 Effect of Nitrogen Source. , 3.3.4.3 Effect of Carbon to Nitrogen (C/N) Ratio -- 3.4 Screening of Microorganisms for Biosurfactant Production -- 3.4.1 Oil Spreading Assay -- 3.4.2 Drop Collapse Assay -- 3.4.3 Blood Agar Method/Hemolysis Assay -- 3.4.4 Hydrocarbon Overlay Agar -- 3.4.5 Bacterial Adhesion to Hydrocarbon (BATH) Assay -- 3.4.6 CTAB Agar Plate Method/Blue Agar Assay -- 3.4.7 Phenol: Sulfuric Acid Method -- 3.4.8 Microplate Assay -- 3.4.9 Penetration Assay -- 3.4.10 Surface/Interface Activity -- 3.4.11 Emulsification Activity -- 3.5 Antioxidant Properties of Biosurfactant -- 3.6 Conclusion -- References -- 4: Classification and Production of Microbial Surfactants -- 4.1 Introduction -- 4.1.1 Global Biosurfactant Market -- 4.2 Types of Biosurfactants -- 4.2.1 Glycolipids -- 4.2.1.1 Rhamnolipids -- 4.2.1.2 Sophorolipids -- 4.2.1.3 Trehalolipids -- 4.2.2 Lipoproteins and Lipopeptides -- 4.2.3 Fatty Acids -- 4.2.4 Phospholipids -- 4.2.5 Polymeric Biosurfactants -- 4.3 Factors Influencing Biosurfactant Productivity -- 4.3.1 Nutritional Factors -- 4.3.1.1 Carbon Source -- 4.3.1.2 Low-Cost and Waste Substrates -- 4.3.1.3 Nitrogen Source -- 4.3.1.4 Minerals -- 4.3.2 Environmental Factors -- 4.3.3 Cultivation Strategy -- 4.3.3.1 Solid-State Fermentation (SSF) -- 4.3.3.2 Submerged Fermentations (SmF) -- References -- 5: Microbial Biosurfactants and Their Potential Applications: An Overview -- 5.1 Introduction -- 5.2 Classes of Biosurfactants -- 5.2.1 Glycolipids -- 5.2.2 Lipopolysaccharides -- 5.2.3 Lipopeptides and Lipoproteins -- 5.2.4 Phospholipids -- 5.2.5 Fatty Acids -- 5.3 Microbial Production of Biosurfactants -- 5.4 Genes Involved in the Production of Microbial Biosurfactants -- 5.5 Applications -- 5.5.1 In Petroleum Industry -- 5.5.1.1 Mechanism of MEOR -- 5.5.2 Biosurfactant-Mediated Bioremediation -- 5.5.3 In Food Industry -- 5.5.4 In Agriculture. , 5.5.5 In Cosmetics -- 5.5.6 Biosurfactant in Nanotechnology -- 5.5.7 Biosurfactants as Drug Delivery Agents -- 5.5.8 Antimicrobial Activity of Biosurfactants -- 5.5.9 Biosurfactant as Anti-Adhesive Agent -- 5.5.10 In Fabric Washing -- 5.6 Conclusions -- References -- 6: Biodegradation of Hydrophobic Polycyclic Aromatic Hydrocarbons -- 6.1 Introduction -- 6.2 Health Related to PAHs -- 6.2.1 Consequences of Consistent of PAH Exposure by Human -- 6.2.2 Problems Associated with PAHs Via Cytochrome P450 -- 6.3 Biodegradation of PAHs -- 6.3.1 Challenges of Limited Aqueous Solubility in Water -- 6.3.2 Biodegradation Pathway of PAHs -- 6.3.2.1 Naphthalene -- 6.3.2.2 Pyrene -- 6.3.2.3 Fluoranthene -- 6.4 Biosurfactants -- 6.4.1 Biosurfactants -- 6.4.1.1 Glycolipid -- Rhamnolipids -- Cellobiose Lipids -- Sophorolipids -- Trehalolipids -- Mannosylerythritol Lipid -- 6.4.1.2 Lipopeptides -- 6.4.1.3 Phospholipids -- 6.4.2 Polymeric Biosurfactants -- 6.5 Enhanced Biodegradation of PAHs by Biosurfactant -- 6.5.1 Biodegradation in Micelles -- 6.5.2 Biosurfactant Acting as Bioemulsifier -- 6.6 Conclusions -- References -- 7: Surfactin: A Biosurfactant Against Breast Cancer -- 7.1 Introduction -- 7.2 Biosurfactants and Its Types -- 7.2.1 Glycolipids -- 7.2.1.1 Rhamnolipids -- 7.2.1.2 Sophorolipids -- 7.2.1.3 Trehalolipids -- 7.2.2 Lipopeptides -- 7.2.3 Fatty Acids -- 7.2.4 Phospholipids -- 7.2.5 Polymeric Biosurfactant -- 7.3 Surfactin: Structure, Membrane Interaction, Biosynthesis, and Regulation -- 7.3.1 Structure -- 7.3.2 Membrane Interaction -- 7.3.3 Biosynthesis -- 7.3.4 Regulation -- 7.4 Surfactin and Breast Cancer -- 7.5 Conclusion -- References -- 8: Anti-Cancer Biosurfactants -- 8.1 Introduction -- 8.2 Biosurfactants Classification and Structure -- 8.2.1 Mannosylerythritol Lipids (MELs) -- 8.2.2 Succinoyl Trehalose Lipids (STLs) -- 8.2.3 Sophorolipids. , 8.2.4 Rhamnolipids (RLs) -- 8.2.5 Myrmekiosides -- 8.2.6 Cyclic Lipopeptides (CLPs) -- 8.2.6.1 Amphisin, Tolaasin, and Syringomycin CLPs -- 8.2.6.2 Iturin and fengycin CLPs -- 8.2.6.3 Surfactin CLP -- 8.2.7 Rakicidns and Apratoxins -- 8.2.8 Serrawettins -- 8.2.9 Monoolein -- 8.2.10 Fellutamides -- 8.3 Biosurfactants Production -- 8.3.1 Factors Involved in Biosurfactants Production -- 8.3.1.1 Source of Carbon -- 8.3.1.2 Source of Nitrogen -- 8.3.1.3 Effect of Ions -- 8.3.1.4 Physical Factors -- 8.4 Anti-Cancer Activity of Biosurfactants -- 8.4.1 Breast Cancer -- 8.4.2 Lung Cancer -- 8.4.3 Leukemia -- 8.4.4 Melanoma -- 8.4.5 Colon Cancer -- 8.5 Biosurfactants as Drug Delivery System (DDS) -- 8.5.1 Liposomes -- 8.5.2 Niosomes -- 8.5.3 Nanoparticles -- 8.6 Conclusions and Future Challenges -- References -- 9: Biosurfactants for Oil Pollution Remediation -- 9.1 Introduction -- 9.2 Oil Pollution and Its Remediation -- 9.2.1 Oil Pollution -- 9.2.2 Oil Remediation in Polluted Environments -- 9.3 Biosurfactants -- 9.3.1 Synthesis of Biosurfactants -- 9.3.2 Biosurfactant Role in Oil Degradation -- 9.4 Application of Biosurfactants Used for Oil Remediation -- 9.4.1 Oil-Polluted Soil Bioremediation -- 9.4.2 Bioremediation of Marine Oil Spills and Petroleum Contamination -- 9.4.3 Cleaning of Oil Tanks and Pipelines -- 9.4.4 Bioremediation of Heavy Metals and Toxic Pollutants -- 9.5 Conclusion -- References -- 10: Potential Applications of Anti-Adhesive Biosurfactants -- 10.1 Introduction -- 10.2 Biosurfactants That Display Anti-Adhesive Activity -- 10.3 Biofilms and the Adhesion Process: Mechanisms and Effects -- 10.4 Applications of Biosurfactants as Anti-Adhesive Agents -- 10.4.1 Anti-Adhesive Applications in the Biomedical Field -- 10.4.2 Anti-Adhesive Applications in the Food Industry Surfaces -- 10.5 Future Trends and Conclusions -- References. , 11: Applications of Biosurfactant for Microbial Bioenergy/Value-Added Bio-Metabolite Recovery from Waste Activated Sludge -- 11.1 Introduction -- 11.2 Applications of Surfactants for Value-Added Bio-Metabolites Recovery from WAS -- 11.3 Applications of Surfactants for Energy Recovery from WAS -- 11.4 Applications of Surfactants for Refractory Organic Decontamination from WAS -- 11.4.1 PAHs Decontamination -- 11.4.2 Dye Decontamination -- 11.4.3 PCB Decontamination -- 11.5 Applications of Surfactants for WAS Dewatering -- 11.6 Applications of Surfactants for Heavy Metal Removal from WAS -- 11.7 State-of-the-Art Processes to Promote Organics Biotransformation from WAS -- 11.7.1 Co-Pretreatment -- 11.7.2 Interfacing AD with Bioelectrochemical Systems -- 11.7.3 Optimizing Process Conditions -- 11.8 Conclusion -- References -- 12: Application of Microbial Biosurfactants in the Pharmaceutical Industry -- 12.1 Introduction -- 12.2 Mechanism of Interaction of Biosurfactants -- 12.3 Physiochemical Properties -- 12.3.1 Surface Tension -- 12.3.2 Biosurfactant and Self-Assembly -- 12.3.3 Emulsification Activity -- 12.4 Application of Biosurfactants in Pharmaceutical Industry -- 12.4.1 Biosurfactant as an Antitumor/AntiCancer Agent -- 12.4.2 Biosurfactants as Drug Delivery Agents -- 12.4.3 Wound Healing and Dermatological Applications -- 12.4.4 Potential Antimicrobial Application -- 12.4.5 Other Applications in the Pharmaceutical Field -- 12.5 Applications of Surfactin in Pharmaceutical Industry -- 12.6 Concluding Remarks -- References -- 13: Antibacterial Biosurfactants -- 13.1 Introduction -- 13.2 Glycolipids -- 13.2.1 Rhamnolipids -- 13.2.2 Sophorolipids -- 13.2.3 Trehalose Lipids -- 13.3 Lipopeptides -- 13.4 Phospholipids -- 13.5 Antibacterial Activity -- 13.6 Polymeric Surfactants -- 13.7 Fatty Acids -- 13.7.1 Bio-Sources of Fatty Acids. , 13.7.2 Role of Fatty Acids as Antimicrobials.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Solvents. ; Electronic books.
    Description / Table of Contents: This book offers an overview of types of solvents and discusses their applications in extraction, organic synthesis, biocatalytic processes, production of fine chemicals, biochemical transformations, composite material, energy storage, polymers and more.
    Type of Medium: Online Resource
    Pages: 1 online resource (517 pages)
    Edition: 1st ed.
    ISBN: 9789400728912
    DDC: 541.3482
    Language: English
    Note: Intro -- Green Solvents II -- Preface -- Editor's Biography -- Acknowledgments -- Contents -- Contributors -- Chapter 1: Ionic Liquids as Green Solvents: Progress and Prospects -- 1.1 Introduction -- 1.2 History of Ionic Liquids (ILs) -- 1.3 Structure of Ionic Liquids (ILs) -- 1.3.1 Cations -- 1.3.2 Anions -- 1.4 Synthesis of Ionic Liquids (ILs) -- 1.4.1 Quaternization Reactions -- 1.4.2 Anion-Exchange Reactions -- 1.4.2.1 Lewis-Acid-Based Ionic Liquids (ILs) -- 1.4.2.2 Anion Metathesis -- 1.5 Properties of Ionic Liquids (ILs) -- 1.5.1 Melting Point -- 1.5.2 Volatility -- 1.5.3 Thermal Stability -- 1.5.4 Viscosity -- 1.5.5 Density -- 1.5.6 Polarity -- 1.5.7 Conductivity and Electrochemical Window -- 1.5.8 Toxicity -- 1.5.9 Air and Moisture Stability -- 1.5.10 Cost and Biodegradability -- 1.6 Solvent Properties and Solvent Effects -- 1.6.1 Solute-Ionic Liquids (ILs) Interactions -- 1.6.1.1 Interaction of Ionic Liquids (ILs) with Water -- 1.6.1.2 Interaction of Ionic Liquids (ILs) with Acid and Base -- 1.6.1.3 Interaction of Ionic Liquids (ILs) with Aromatic Hydrocarbon -- 1.6.1.4 Interaction with Chiral Substrates -- 1.7 Conclusions -- References -- Chapter 2: Ionic Liquids as Green Solvents for Alkylation and Acylation -- 2.1 Introduction -- 2.2 Alkylation -- 2.2.1 Ionic Liquids as Green Solvents -- 2.2.2 Ionic Liquids as Dual Green Solvents and Catalysts -- 2.2.3 Ionic Liquids Immobilized on Solid Supports -- 2.3 Acylation -- 2.3.1 Ionic Liquids as Green Solvents -- 2.3.2 Ionic Liquids in Dual Role as Green Solvents and Catalysts -- 2.3.3 Immobilized Ionic Liquids -- 2.4 Remarks -- References -- Chapter 3: Ionic Liquids as Green Solvents for Glycosylation Reactions -- 3.1 Introduction -- 3.2 Preparation of Acid-Ionic Liquids -- 3.3 Reusability of Acid-Ionic Liquids -- 3.4 Tunability and Basicity of Ionic Liquids. , 3.5 Nonvolatility of Ionic Liquids -- 3.6 Conclusions -- References -- Chapter 4: Ionic Liquid Crystals -- 4.1 Introduction -- 4.2 Ionic Liquid Crystals Based on Organic Cationsand Anions -- 4.2.1 Imidazolium-Based Ionic Liquid Crystals -- 4.2.2 Pyrrolidinium-Based Ionic Liquid Crystals -- 4.2.3 Pyridinium and Bipyridinium-Based IonicLiquid Crystals -- 4.2.4 Morpholinium-, Piperazinium-, and Piperidinium-BasedIonic Liquid Crystals -- 4.2.5 Ammonium-Based Ionic Liquid Crystals -- 4.2.6 Guanidinium-Based Ionic Liquid Crystals -- 4.2.7 Phosphonium-Based Ionic Liquid Crystals -- 4.2.8 Anions -- 4.3 Ionic Liquid Crystals Based on Metal Ions -- 4.4 Polymeric Ionic Liquid Crystals -- 4.4.1 Main-Chain Ionic Liquid-Crystalline Polymers -- 4.4.2 Side-Chain Ionic Liquid-Crystalline Polymers -- 4.4.3 Dendrimers -- 4.5 Applications of Ionic Liquid Crystals -- 4.6 Conclusions -- References -- Chapter 5: Application of Ionic Liquids in Extraction and Separation of Metals -- 5.1 Introduction -- 5.2 Processing Metal Oxides and Ores with Ionic Liquids -- 5.2.1 Metal Oxides Processing -- 5.2.2 Mineral Processing -- 5.3 Electrodeposition of Metals Using Ionic Liquids -- 5.3.1 Electrodeposition of Aluminum -- 5.3.2 Electrodeposition of Magnesium -- 5.3.3 Electrodeposition of Titanium -- 5.4 Ionic Liquids in Solvent Extraction of Metal Ions -- 5.5 Conclusions -- References -- Chapter 6: Potential for Hydrogen Sulfide Removal Using Ionic Liquid Solvents -- 6.1 Introduction -- 6.2 Ionic Liquids as Physical Solvents for H 2 S Removal -- 6.3 Hybrid Solvents Comprising Ionic Liquids and Amines -- 6.4 Conclusions and Outlook -- References -- Chapter 7: Biocatalytic Reactions in Ionic Liquid Media -- 7.1 Introduction -- 7.2 Biocatalyst Tested in Ionic Liquids -- 7.2.1 Lipases -- 7.2.2 Esterases and Proteases -- 7.2.3 Glycosidases -- 7.2.4 Oxidoreductases. , 7.3 Effect of the Ionic Liquid Composition on the Activity and Stability of Enzymes -- 7.4 Biotransformation in Ionic Liquids -- 7.4.1 Synthesis of Flavour Esters -- 7.4.2 Biotransformations of Polysaccharides and Nucleotides -- 7.4.3 Synthesis of Biodiesel -- 7.4.4 Synthesis of Polyesters -- 7.4.5 Resolution of Racemates -- 7.4.6 Synthesis of Carbohydrates -- 7.5 Conclusions -- References -- Chapter 8: Ionic Liquids/Supercritical Carbon Dioxide as Advantageous Biphasic Systems in Enzymatic Synthesis -- 8.1 Introduction -- 8.2 Supercritical Carbon Dioxide in Enzymatic Synthesis -- 8.3 Ionic Liquids as Reaction Media in Enzymatic Synthesis -- 8.4 Supercritical Carbon Dioxide/Ionic Liquid Biphasic System in Enzymatic Synthesis -- 8.5 Conclusions -- References -- Chapter 9: Ionic Liquids as Lubricants -- 9.1 Introduction -- 9.2 Overview of Ionic Liquids (ILs) -- 9.2.1 Definition and Types of Ionic Liquids (ILs) -- 9.2.2 Relationship Between Molecular Structure and Properties of Ionic Liquids (ILs) -- 9.3 Common Ionic Liquids (ILs) as Lubricants -- 9.3.1 Ionic Liquids (ILs) as Lubrication Oils -- 9.3.1.1 Ionic Liquids (ILs) as Lubrication Oils for Fe Alloy/Steel or Steel/Steel Contacts -- 9.3.1.2 Ionic Liquids (ILs) as Lubrication Oils of Light Alloys -- 9.3.1.3 Ionic Liquids (ILs) as Lubrication Oils for Specific Contacts -- 9.3.1.4 Ionic Liquids (ILs) as Lubrication Oils Under Vacuum -- 9.3.2 Ionic Liquids (ILs) as Lubrication Additives -- 9.3.2.1 Ionic Liquids (ILs) as Water Additives -- 9.3.2.2 Ionic Liquids (ILs) as Mineral Oil Additives -- 9.3.2.3 Ionic Liquids (ILs) as Synthetic Oil and Lubrication Grease Additives -- 9.3.2.4 Ionic Liquids (ILs) as Polymer Material Additives -- 9.3.3 Additives of Ionic Liquid (IL) Lubricants -- 9.3.4 Thin Films -- 9.4 Function of Ionic Liquids (ILs) as Lubricants. , 9.4.1 Function of Ionic Liquids (ILs) as Lubrication Oils -- 9.4.2 Function of Ionic Liquids (ILs) as Additives or Thin Films -- 9.5 Lubrication Mechanism -- 9.6 Conclusions and Outlook -- References -- Chapter 10: Stability and Activity of Enzymes in Ionic Liquids -- 10.1 Introduction -- 10.1.1 Ionic Liquid in Reference to Its Origin -- 10.1.2 Ionic Liquid as a Solvent -- 10.1.3 Enzymes in Ionic Liquids -- 10.2 Enzyme Stability in Ionic Liquids -- 10.2.1 Stability of Lipases -- 10.2.2 Stability of Monellin -- 10.2.3 Stability of Cytochrome c -- 10.2.4 Stability of α -Chymotrypsin -- 10.2.5 Stability of Penicillin G Acylase -- 10.3 Methods of Stabilizing Proteins/Enzymes in Ionic Liquids -- 10.3.1 Stabilization by Ionic Liquid Coating -- 10.3.2 Stabilization by Anchoring with Carbon Nanotubes -- 10.3.3 Stabilization by Capping with Nanoparticles -- 10.3.4 Stabilization by Entrapment in Hydrogels -- 10.3.5 Stabilization by Enzyme Modification -- 10.3.6 Stabilization by Emulsification of Ionic Liquids -- 10.4 Catalytic Activity of Enzymes in Ionic Liquids -- 10.4.1 Biotransformations by Lipases and Esterases -- 10.4.1.1 Esterification and Transesterification Reaction -- 10.4.1.2 Enantioselective Hydrolysis Reaction -- 10.4.1.3 Enantioselective Acylation Reaction -- 10.4.1.4 Kinetic Resolution of Alcohols -- 10.4.2 Reactions Catalyzed by Proteases -- 10.4.3 Carbohydrate Synthesis by Glycosidases -- 10.4.4 Hydrocyanation Reaction by Lyases -- 10.4.5 Biocatalytic Redox Reactions by Oxidoreductases -- 10.4.6 Enzymatic Polymerization Reaction in Ionic Liquids -- 10.5 Stability/Activity Vis-à-vis Solvent Property of Ionic Liquids: A Structure-Activity Relationship (SAR) Analysis -- 10.6 Conclusions -- References -- Chapter 11: Supported Ionic Liquid Membranes: Preparation, Stability and Applications -- 11.1 Introduction. , 11.2 Methods of Preparation and Characterization of Supported Ionic Liquid Membranes -- 11.3 Stability of Supported Ionic Liquid Membranes -- 11.4 Mechanism of Transport Through Supported Ionic Liquid Membranes -- 11.5 Fields of Application of Supported Liquid Membranes -- 11.6 Conclusions -- References -- Chapter 12: Application of Ionic Liquids in Multicomponent Reactions -- 12.1 Introduction -- 12.1.1 Ionic Liquids Based on 1-Butyl-3-methylimidazolium -- 12.1.1.1 1-Butyl-3-methylimidazolium -- 12.1.1.2 1-Butyl-3-methylimidazolium Hexafluorophosphate -- 12.1.1.3 1-n-Butyl-3-methylimidazolium Bromide -- 12.1.1.4 Butyl Methyl Imidazolium Hydroxide -- 12.1.1.5 Other 1-Butyl-3-methylimidazolium-Based Ionic Liquids -- 12.1.2 Other Imidazole-Based Ionic Liquids -- 12.1.2.1 Ionic Liquid-Supported Iodoarenes -- 12.1.2.2 1,3- n -Dibutylimidazolium Bromide -- 12.1.2.3 1- n -Butylimidazolium Tetrafluoroborate -- 12.1.2.4 1-Ethyl-3-methylimidazole Acetate -- 12.1.2.5 An Acidic Ionic Liquid -- 12.1.2.6 Task-Specific Ionic Liquids -- 12.1.2.7 1-Methyl-3-heptyl-imidazolium Tetrafluoroborate -- 12.1.2.8 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Hexafluorophosphate-Bound Acetoacetate -- 12.1.2.9 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Tetrafluoroborate- or Hexafluorophosphate-Bound b -oxo Esters -- 12.1.2.10 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate or Hexafluorophosphate and N -(2-Hydroxyethyl)pyridinium Tetrafluoroborate or Hexafluorophosphate -- 12.1.2.11 PEG-1000-Based Dicationic Acidic Ionic Liquid -- 12.1.2.12 1-Ethyl-3-methylimidazolium ( S)-2-Pyrrolidinecarboxylic Acid Salt -- 12.1.2.13 1-Methyl-3-pentylimidazolium Bromide -- 12.1.2.14 3-Methyl-1-sulfonic Acid Imidazolium Chloride -- 12.1.3 Other Ionic Liquids -- 12.2 Conclusions -- References. , Chapter 13: Ionic Liquids as Binary Mixtures with Selected Molecular Solvents, Reactivity Characterisation and Molecular-Microscopic Properties.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Nanotechnology-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9780323951722
    DDC: 615.1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Ion exchange. ; Ion exchange. fast. ; Electronic books.
    Description / Table of Contents: This overview of the industrial applications of ion-exchange materials focuses on their use in a host of fields including chemical and biochemical separation, water purification, biomedical science, toxic metal recovery and manufacturing alcoholic drinks.
    Type of Medium: Online Resource
    Pages: 1 online resource (462 pages)
    Edition: 1st ed.
    ISBN: 9789400740266
    Language: English
    Note: Intro -- Ion Exchange Technology II -- Preface -- Editors' Bios -- Contents -- Contributors -- List of Abbreviations -- Chapter 1: Separation of Amino Acids, Peptides, and Proteins by Ion Exchange Chromatography -- Chapter 2: Application of Ion Exchanger in the Separation of Whey Proteins and Lactin from Milk Whey -- Chapter 3: Application of Ion Exchangers in Speciation and Fractionation of Elements in Food and Beverages -- Chapter 4: Applications of Ion Exchangers in Alcohol Beverage Industry -- Chapter 5: Use of Ion Exchange Resins in Continuous Chromatography for Sugar Processing -- Chapter 6: Application of Ion Exchange Resins in the Synthesis of Isobutyl Acetate -- Chapter 7: Therapeutic Applications of Ion Exchange Resins -- Chapter 8: Application of Ion Exchange Resins in Kidney Dialysis -- Chapter 9: Zeolites as Inorganic Ion Exchangers for Environmental Applications: An Overview -- Chapter 10: Ion Exchange Materials and Environmental Remediation -- Chapter 11: Metal Recovery, Separation and/or Pre-concentration -- Chapter 12: Application of Ion Exchange Resins in Selective Separation of Cr(III) from Electroplating Effluents -- Chapter 13: Effect of Temperature, Zinc, and Cadmium Ions on the Removal of Cr(VI) from Aqueous Solution via Ion Exchange with Hydrotalcite -- Chapter 14: An Overview of '3d' and '4f' Metal Ions: Sorption Study with Phenolic Resins -- Chapter 15: Inorganic Ion Exchangers in Paper and Thin-Layer Chromatographic Separations -- Chapter 16: Cation-Exchanged Silica Gel-Based Thin-Layer Chromatography of Organic and Inorganic Compounds -- Chapter 17: Ion Exchange Technology: A Promising Approach for Anions Removal from Water -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Organic compounds-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (590 pages)
    Edition: 1st ed.
    ISBN: 9780323996440
    DDC: 620.1180286
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9780128219010
    DDC: 541.39
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave-assisted green synthesis of inorganic nanomaterials -- Description -- Key features -- 1. Introduction -- 2. Technical aspects of microwave technique -- 2.1. Principles and heating mechanism of microwave method -- 2.2. Green solvents for microwave reactions -- 2.3. Microwave versus conventional synthesis -- 2.4. Microwave instrumentation -- 2.5. Advantages and limitations -- 3. MW-assisted green synthesis of inorganic nanomaterials -- 3.1. Metallic nanostructured materials -- 3.2. Metal oxides nanostructured materials -- 3.3. Metal chalcogenides nanostructured materials -- 3.4. Quantum dot nanostructured materials -- 4. Conclusions and future aspects -- 4.1. Challenges and scope to further study -- References -- Chapter 2: Green synthesis of inorganic nanoparticles using microemulsion methods -- Description -- Key features -- 1. Introduction -- 2. Fundamental aspects of microemulsion synthesis -- 2.1. Microemulsion and types -- 2.2. Micelles, types, and formation mechanism -- 2.3. Hydrophilic-lipophilic balance number -- 2.4. Surfactants and types -- 2.5. Advantages and limitations of microemulsion synthesis of nanomaterials -- 3. Microemulsion-assisted green synthesis of inorganic nanostructured materials -- 3.1. General mechanism microemulsion method for nanomaterial synthesis -- 3.2. Preparation of metallic and bimetallic nanoparticles -- 3.3. Metal oxide synthesis by microemulsion -- 3.4. Synthesis of metal chalcogenide nanostructured materials -- 3.5. Synthesis of inorganic quantum dots -- 4. Conclusions, challenges, and scope to further study -- References -- Chapter 3: Synthesis of inorganic nanomaterials using microorganisms -- 1. Introduction. , 2. Green approach for synthesis of nanoparticles -- 3. General mechanisms of biosynthesis -- 4. Optimization of nanoparticles biosynthesis -- 4.1. Effect of the temperature -- 4.2. Effect of pH -- 4.3. Effect of metal precursor concentration -- 4.4. Effect of culture medium composition -- 4.5. Effect of biomass quantity and age -- 4.6. Synthesis time -- 5. Biosynthesis of metal oxide nanoparticles -- 5.1. Bacteria-mediated synthesis -- 5.2. Fungi-mediated synthesis -- 5.3. Yeast-mediated synthesis -- 5.4. Algae- and viruses-mediated synthesis -- 6. Biosynthesis of metal chalcogenide nanoparticles -- 7. Final considerations -- References -- Chapter 4: Challenge and perspectives for inorganic green synthesis pathways -- 1. Introduction -- 2. Synthesis methods -- 2.1. Physical synthesis -- 2.1.1. Advantages -- 2.1.2. Inconvenient -- 2.2. Chemical synthesis -- 2.2.1. Advantages -- 2.2.2. Inconvenient -- 2.3. Green synthesis of inorganic nanomaterials and application -- 3. Challenge and perspectives -- 4. Conclusion -- References -- Chapter 5: Synthesis of inorganic nanomaterials using carbohydrates -- 1. Introduction -- 1.1. Types of nanomaterials -- 1.2. Approaches for the synthesis of inorganic nanomaterials -- 1.3. Characterization of inorganic nanomaterials -- 1.4. What are carbohydrates? -- 1.4.1. Types of carbohydrates -- Monosaccharides -- Oligosaccharides -- Polysaccharides -- 2. Synthesis of inorganic nanomaterials using carbohydrates -- 2.1. Synthesis of metal nanomaterials using carbohydrates -- 2.2. Synthesis of metal oxide-based nanomaterials using carbohydrates -- 2.3. Synthesis of nanomaterials using polysaccharides extracted from fungi and plant -- 3. The advantages and disadvantages of inorganic nanomaterials -- 4. Conclusion and future scope -- References -- Chapter 6: Fundamentals for material and nanomaterial synthesis. , 1. Introduction -- 2. Fundamental synthesis for materials -- 2.1. Solid-state synthesis -- 2.2. Chemical vapor transport -- 2.3. Sol-gel process -- 2.4. Melt growth (MG) method -- 2.5. Chemical vapor deposition -- 2.6. Laser ablation methods -- 2.7. Sputtering method -- 2.8. Molecular beam epitaxy method -- 3. Fundamental synthesis for nanomaterials -- 3.1. Top-down and bottom-up approaches -- 3.1.1. Ball milling (BL) synthesis process -- 3.1.2. Electron beam lithography -- 3.1.3. Inert gas condensation synthesis method -- 3.1.4. Physical vapor deposition methods -- 3.1.5. Laser pyrolysis methods -- 3.2. Chemical synthesis methods -- 3.2.1. Sol-gel method -- 3.2.2. Chemical vapor deposition method -- 3.2.3. Hydrothermal synthesis -- 3.2.4. Polyol process -- 3.2.5. Microemulsion technique -- 3.2.6. Microwave-assisted (MA) synthesis -- 3.3. Bio-assisted (B-A) methods -- 4. Conclusion -- References -- Chapter 7: Bioinspired synthesis of inorganic nanomaterials -- 1. Introduction -- 1.1. Nanomaterials and current limitations -- 1.2. Bioinspired synthesis -- 2. General mechanism of interaction -- 3. Bioinspired synthesis of inorganic nanomaterials -- 3.1. Microorganisms-mediated synthesis -- 3.2. Plant-mediated synthesis -- 3.2.1. Root extract assisted synthesis -- 3.2.2. Leaves extract assisted synthesis -- 3.2.3. Shoot-mediated synthesis -- 3.3. Protein templated synthesis -- 3.4. DNA-templated synthesis -- 3.5. Butterfly wing scales-templated synthesis -- 4. Applications of bioinspired nanomaterials -- 5. Conclusions -- References -- Chapter 8: Polysaccharides for inorganic nanomaterials synthesis -- 1. Introduction -- 2. Polysaccharides -- 2.1. Types of polysaccharides -- 2.1.1. Cellulose -- 2.1.2. Starch -- 2.1.3. Chitin -- 2.1.4. Chitosan -- 2.1.5. Properties of polysaccharides for bioapplications -- 3. Nanomaterials -- 3.1. Types of nanomaterials. , 3.1.1. Organic nanomaterials -- Carbon nanotubes -- Graphene -- Fullerenes -- 3.1.2. Inorganic nanomaterials -- Magnetic nanoparticles -- Metal nanoparticles -- Metal oxide nanoparticles -- Luminescent inorganic nanoparticles -- 3.2. Health effects of nanomaterials -- 4. Polysaccharide-based nanomaterials -- 4.1. Cellulose nanomaterials -- 4.1.1. Preparation of cellulose nanomaterials -- 4.1.2. Structure of cellulose nanomaterials -- 4.2. Chitin nanomaterials -- 4.2.1. Preparation of chitin nanomaterials -- 4.2.2. Structure and properties of chitin nanomaterials -- 4.3. Starch nanomaterials -- 4.3.1. Preparation of starch nanomaterials -- 4.3.2. Structure and properties of starch nanomaterials -- 5. Preparation of polysaccharide-based inorganic nanomaterials -- 5.1. Bulk nanocomposites -- 5.2. Composite nanoparticles -- 6. Applications of polysaccharide-based inorganic nanomaterials -- 6.1. Biotechnological applications -- 6.1.1. Bioseparation -- 6.1.2. Biolabeling and biosensing -- 6.1.3. Antimicrobial applications -- 6.2. Biomedical applications -- 6.2.1. Drug delivery -- 6.2.2. Digital imaging -- 6.2.3. Cancer treatment -- 6.3. Agricultural applications -- 7. Characterization of polysaccharide-based nanomaterials -- 7.1. Spectroscopy -- 7.1.1. Infrared (IR) spectroscopy -- 7.1.2. Surface-enhanced Raman scattering (SERS) -- 7.1.3. UV-visible absorbance spectroscopy -- 7.2. Microscopy -- 7.2.1. Scanning electron microscopy (SEM) -- 7.2.2. Transmission electron microscopy (TEM) -- 7.3. X-ray methods -- 7.4. Thermal analysis -- 8. Future prospects -- 9. Concluding remarks -- References -- Chapter 9: Supercritical fluids for inorganic nanomaterials synthesis -- 1. Introduction -- 2. The supercritical fluid as a substitute technology -- 2.1. What is supercritical fluid? -- 2.2. Supercritical antisolvent precipitation. , 2.3. Supercritical-assisted atomization -- 2.4. Sol-gel drying method -- 3. Synthesis in supercritical fluids -- 3.1. Route of supercritical fluids containing nanomaterials synthesis -- 3.2. Sole supercritical fluid -- 3.3. Mixed supercritical fluid -- 4. Theory of the synthesis of supercritical fluids containing nanomaterials -- 4.1. Supercritical fluids working process -- 4.2. Origin of nanoparticles -- 4.3. The rapid expansion of supercritical solutions -- 5. Conclusion -- References -- Chapter 10: Green synthesized zinc oxide nanomaterials and its therapeutic applications -- 1. Introduction -- 2. Green synthesis -- 3. ZnO NPs characterization -- 4. ZnO NPs synthesis by plant extracts -- 5. ZnO NPs synthesis by bacteria and actinomycetes -- 6. ZnO NPs synthesis by algae -- 7. ZnO NPs synthesis by fungi -- 8. NPs synthesis by virus -- 9. ZnO NPs synthesis with alternative green sources -- 10. Therapeutic applications -- 11. Conclusions -- References -- Chapter 11: Sonochemical synthesis of inorganic nanomaterials -- 1. Background -- 2. Inorganic nanomaterials in sonochemical synthesis -- 3. Applications -- 4. Final comments -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Solvents-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (412 pages)
    Edition: 1st ed.
    ISBN: 9780128173879
    DDC: 541.3482
    Language: English
    Note: Front Cover -- Green Sustainable Process for Chemical and Environmental Engineering and Science -- Copyright -- Contents -- Contributors -- Chapter 1: Conversion of biomass to chemicals using ionic liquids -- 1. Introduction -- 2. Biomass as a renewable resource of chemicals -- 2.1. Interaction among biomass components -- 2.2. Pretreatment of lignocellulosic biomass using ionic liquids -- 2.3. Lignocellulosic biomass conversion to various chemicals -- 3. Platform chemicals from lignocellulosic biomass -- 3.1. 5-HMF and EMF from lignocellulosic biomass -- 3.2. Levulinic acid from lignocellulosic biomass -- 4. Ionic liquids: Significant in conversion of lignocellulose to platform chemicals -- 4.1. Biomass conversion to chemicals using acidic ILs -- 5. Conversion of biomass to 5-HMF and EMF using ILs -- 6. LA from lignocellulosic biomass -- 7. Effects of ILs properties on conversion of cellulose/lignocellulose to LA -- 8. Summary -- References -- Chapter 2: Ionic liquids for enzyme-catalyzed production of biodiesel -- 1. Introduction -- 2. Influence of ionic liquid cation in biocatalyzed biodiesel production -- 2.1. Imidazolium-based ionic liquids -- 2.2. Other cations -- 3. Impact of ionic liquid anion in biocatalyzed biodiesel production -- 4. Biocatalysts employed in biodiesel production with ionic liquids -- 5. Substrates and acyl acceptors for biocatalyzed biodiesel production with ionic liquids -- 6. Operation temperature for biocatalyzed biodiesel production with ionic liquids -- 7. Conclusions -- References -- Chapter 3: Organic synthesis on ionic liquid support: A new strategy for the liquid-phase organic synthesis (LPOS) -- 1. Introduction -- 2. Synthesis of small molecules on ionic liquid support -- 3. Ionic liquid-supported reagents for organic synthesis -- 4. Ionic liquid-supported catalysts for organic synthesis. , 5. Conclusion and outllook -- References -- Further reading -- Chapter 4: Separation of volatile organic compounds by using immobilized ionic liquids -- 1. Introduction -- 2. Ionic liquids for the separation of organic compounds -- 3. Separation of organic volatile compounds by IL-based membranes -- 3.1. Supported ionic liquid membranes -- 3.1.1. Flat sheet-supported ionic liquid membranes -- 3.2. Hollow fiber-supported ionic liquid membranes -- 3.3. Anodic aluminum oxide/ionic liquid membranes -- 4. Conclusions -- References -- Chapter 5: Deep eutectic solvents -- 1. Introduction -- 2. Properties and characteristics of DES -- 3. Synthesis of DES -- 4. Application of DES in sample preparation -- 4.1. Food analysis -- 4.2. Environmental analysis -- 4.3. Biological analysis -- 5. Conclusions and future trends -- References -- Further reading -- Chapter 6: Ionic liquids as scavenger -- 1. Introduction -- 1.1. Solid- and solution-phase chemistry -- 1.2. Scavenger properties and mechanism -- 1.3. Ionic liquids as scavengers and their properties -- 2. Task-specific ionic liquids as scavenger -- 2.1. Amino-functionalized ionic liquids as scavenger -- 2.2. Diol-functionalized ionic liquid as scavenger -- 2.3. Ionic liquids functionalized with Michael acceptor as scavenger -- 2.4. Si-supported sulfonic acid-functionalized ionic liquid as scavenger -- 2.5. Carboxyl-functionalized ionic liquids as scavenger -- 2.6. Aldehyde-functionalized ionic liquids as scavenger -- 2.7. Azide-functionalized ionic liquid as scavenger -- 2.8. Amino acid-functionalized ionic liquid as scavenger -- 2.9. Chlorosalicylaldehyde-functionalized ionic liquids as scavenger -- 3. Conclusion -- References -- Chapter 7: Recent developments in ionic liquid-based electrolytes for energy storage supercapacitors and rechargeable b -- 1. Introduction. , 2. Recent developments in ionic liquid-based supercapacitors and batteries -- 3. Development of porous electrodes for ionic liquid electrolytes -- 4. Development of high operating temperature supercapacitors and batteries -- 5. Effect of cationic or anionic species on the electrochemical performance of ionic liquids -- 6. Conclusion -- References -- Chapter 8: Recent insights on solubility and stability of biomolecules in ionic liquid -- 1. Introduction -- 2. Available resources on properties of ionic liquids -- 3. Advantages of ILs for biomolecule-based applications -- 3.1. Biocompatibility and biodegrability of ILs -- 4. Biomolecules solubility and stability in ILs -- 4.1. Nucleic acids in ILs -- 4.2. Carbohydrates in ILs -- 4.3. Proteins in ILs -- 5. Conclusion -- References -- Chapter 9: Ionic liquid-based membranes for water softening -- 1. Introduction -- 1.1. Ionic liquids (ILs) -- 1.2. Water purification: Challenges and perspectives -- 2. Liquid membrane -- 3. Bulk membranes based on ionic liquids -- 3.1. Extraction of phenols -- 3.2. Extraction of metal ions -- 4. Emulsion liquid membranes -- 5. Supported liquid membranes (SLMs) -- 5.1. Flat sheet liquid membrane -- 5.1.1. IL-SLM as extracting agents for heavy metal ions -- 5.1.2. Extraction of endosulfan -- 5.1.3. Separation of volatile organic compounds by ILs -- 5.1.4. Removal of phenolic compounds from water -- 5.1.5. Separation of organic liquids -- 5.2. Hollow fiber-supported IL membrane -- 5.2.1. Extraction of phenols -- 5.2.2. Extraction of metal ions -- 6. Polymer inclusion membranes (PIMs) -- 6.1. Extraction of metal ions -- 6.2. Extraction of antibiotics -- 6.3. Extraction of organic molecules -- 7. Conclusions -- References -- Chapter 10: Ionic liquids in gas sensors and biosensors -- 1. Introduction -- 2. Properties of ILs -- 3. Transducers utilized in IL-based sensors. , 3.1. Electrochemical transducers -- 3.2. Mass-sensing transducers -- 3.3. Optical transducers -- 3.4. IL-modified electrodes -- 3.5. Multitransduction modes -- 4. Immobilization techniques -- 5. Applications of IL-based sensors and biosensors -- 6. Future prospects -- 6.1. Electronic nose instruments -- 6.2. Ion Jelly ionic liquids -- 6.3. 3-D printing technology -- 7. Conclusions -- References -- Further reading -- Chapter 11: Ionic liquids as gas sensors and biosensors -- 1. Introduction -- 2. Ionic liquid-based electrochemical biosensors -- 2.1. Ionic liquid-based carbon nanomaterial biosensors -- 2.2. Ionic liquid based biosensor/metal nanomaterials -- 2.3. Gel-based biosensors -- 3. Electrochemical gas sensors -- 3.1. Electrochemical gas sensor-Oxygen (O2) sensors -- 3.2. Electrochemical gas sensor-Nitrogen oxide (NOx) -- 4. Optical gas sensors -- 4.1. Optical oxygen gas sensors -- 4.2. Optical carbon dioxide gas sensors -- 5. Other forms of gas sensors and applications of ionic liquids -- 5.1. Gas seniors-semiconducting metal oxides -- 5.2. Carbon-IL composite gas sensors -- 6. Conclusion -- References -- Further reading -- Chapter 12: Imidazolium-based room temperature ionic liquids for electrochemical reduction of carbon dioxide to carbon mo ... -- 1. Introduction -- 2. Mechanistic aspects -- 2.1. Formation of imidazolium-CO2 adducts -- 2.2. Deactivation of imidazolium cation during CO2 ERR -- 2.3. Structural transitions of imidazolium ILs at electrode-electrolyte interface -- 3. Role of imidazolium ILs in homogeneous reduction of CO2 -- 4. Role of imidazolium ILs in heterogeneous reduction of CO2 -- 4.1. With noble metal-based electrodes -- 4.2. With nonnoble metal-based electrodes -- 4.3. With polymers -- 4.4. With carbon-based electrodes -- 5. Conclusion -- References. , Chapter 13: Ionic liquid based electrochemical sensors and their applications -- 1. Introduction -- 2. History of ionic liquids -- 3. Electrochemical properties of ionic liquids -- 4. Ionic liquid based electrochemical sensors -- 5. Ionic liquid applications in electrochemical sensors -- 6. Conclusions -- References -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Microbial biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (734 pages)
    Edition: 1st ed.
    ISBN: 9789811622250
    Series Statement: Environmental and Microbial Biotechnology Series
    Language: English
    Note: Intro -- Contents -- About the Editors -- 1: Application of Endophyte Microbes for Production of Secondary Metabolites -- 1.1 Introduction -- 1.2 Origin and Evolution of Endophytes -- 1.3 Endophyte Diversity -- 1.4 Close Relationship Between Endophytes and Medicinal Herbs -- 1.5 Endophytes and Secondary Metabolites -- 1.6 Terpenoids -- 1.7 Phenolics -- 1.8 Flavonoids -- 1.9 Alkaloids -- 1.10 Glycosides -- 1.11 Saponins -- 1.12 Polyketides -- 1.13 Coumarins -- 1.14 Steroids -- 1.15 Conclusion and Perspectives -- References -- 2: Application of Microbes in Synthesis of Electrode Materials for Supercapacitors -- 2.1 Introduction -- 2.1.1 Basics of Supercapacitors -- 2.1.2 Electrode Materials for Supercapacitors -- 2.1.3 Why Microbes in Energy Storage Devices? -- 2.2 Different Microbes Commonly Used in EES -- 2.2.1 Bacteria -- What so Special About Bacterial Cellulose? -- 2.2.2 Viruses -- 2.2.3 Fungi -- 2.3 Microbes as Bio-templates for Energy Storage Materials -- 2.3.1 Bacteria as Bio-templates -- 2.3.2 Fungi as Bio-templates -- 2.3.3 Viruses as Bio-templates -- 2.4 Microbe-Based Carbon Materials as Supporting Matrix -- 2.5 Microbe-Derived Carbons for Energy Storage Applications -- 2.5.1 Bacteria-Derived Carbons for Energy storage applications -- 2.5.2 Fungi-Derived Carbons for Energy Storage Applications -- 2.5.3 Microbe-Derived Carbon-Based Nanocomposites as Energy Storage Materials -- 2.6 Conclusion and Future Prospects -- References -- 3: Application of Microbes in Climate-Resilient Crops -- 3.1 Introduction -- 3.2 Heat Stress Tolerance -- 3.3 Cold Stress Tolerance -- 3.4 Submergence Stress Tolerance -- 3.5 Salinity and Drought Stress Tolerance -- 3.6 Conclusion and Future Perspectives -- References -- 4: Application of Microbes in Biotechnology, Industry, and Medical Field -- 4.1 Overview of Microorganisms -- 4.1.1 Prokaryotic Microorganisms. , Bacteria -- Archaea -- 4.1.2 Eukaryotic Microorganisms -- Protist -- Fungi -- Virus -- 4.2 Principles -- 4.2.1 Screening for Microbial Products -- Screening Methods -- 4.2.2 Microbial Bioprocess -- Optimization -- Sustainable Technologies -- 4.2.3 Enzymology -- 4.2.4 Gene Manipulation -- Recombinant DNA Technology -- 4.3 Applications -- 4.3.1 Industry -- Food-Fermented Foods -- Improvement of Food Quality -- Improvement Efficiency and Productivity of Process -- Food Additives -- Agroindustry -- Pest in Crops -- Crop Yield and Product Quality -- Construction -- Chemical Industry -- Cleaning -- Bioremediation -- Chemical-Based Cleaning Products -- 4.3.2 Environment -- Wastewater Treatment -- Solid Hazardous Treatment -- Composting -- Anaerobic Digestion -- Metal Recovery -- Microbial Biofuels -- Biomethanol -- Bioethanol -- Butanol -- Biodiesel -- Medical Biotechnology -- 4.4 Conclusions -- References -- 5: Applications of Microbes for Energy -- 5.1 Introduction -- 5.2 Microbes for Energy Applications -- 5.2.1 Microbes for Fuel Cells -- 5.2.2 Microbes for Hydrogen Production -- 5.2.3 Microbes for Methane Production -- 5.2.4 Microbes for Ethanol Production -- 5.2.5 Microbes for Biodiesel Production -- 5.2.6 Microbes for Electrosynthesis -- 5.2.7 Microbes for Energy Storage -- 5.3 Conclusion and Future Remarks -- References -- 6: Applications of Microbes in Electric Generation -- 6.1 Introduction -- 6.2 Different BFC Types -- 6.2.1 DET-BFC -- 6.2.2 MET-BFC -- 6.2.3 EBFC -- 6.2.4 MFC -- 6.3 Electrocatalytic Nanomaterials for EBFC -- 6.3.1 Carbon Materials -- 6.3.2 Metal Nanoparticles -- 6.3.3 Composite Materials -- 6.4 Electrocatalytic Nanomaterials for MFC -- 6.4.1 Electrocatalytic Nanomaterials for MFC Anode -- Carbon Nanomaterials -- Metal Nanomaterials -- Conductive Polymers -- 6.4.2 Electrocatalytic Nanomaterials for MFC Cathode. , Noble Metal-Based Materials -- Non-noble Metal-Based Materials -- 6.5 Summary and Prospect -- References -- 7: Application of Microbes in Household Products -- 7.1 Introduction -- 7.2 Household Products -- 7.2.1 Cleaning Product -- 7.2.2 Cosmeceutical -- 7.2.3 Textiles -- 7.2.4 Others -- 7.3 Benefits and Challenges -- 7.4 Conclusion -- References -- 8: Electricity Generation and Wastewater Treatment with Membrane-Less Microbial Fuel Cell -- 8.1 Introduction -- 8.2 Electricity Generation -- 8.2.1 Anode and Cathode Electrodes -- Cathode Electrode -- Anode Electrode -- 8.2.2 Effect of Operating Temperature -- 8.2.3 Effect of pH -- 8.2.4 Effect of Substrate Pretreatment -- 8.2.5 Effect of Reactor Design -- 8.2.6 Effect of Electrode Surface Area and Electrode Spacing -- 8.2.7 Effect of Substrate Conductivity -- 8.3 Water Treatment (Substrate) -- 8.4 Conclusion -- References -- 9: Microbes: Applications for Power Generation -- 9.1 Introduction -- 9.2 Reduction of the Environmental and Air Pollution -- 9.2.1 Natural Aerosols from Vegetation -- 9.2.2 Landfill Gas -- 9.2.3 Biogas -- Using Leachate of the Waste -- 9.2.4 Biodiesel -- 9.2.5 Bioethanol -- Using Celluloses -- Using Starch -- Using Sugar -- 9.2.6 Sewer -- 9.3 Energy Efficiency -- 9.3.1 Microorganisms -- 9.3.2 Microbial Fuel Cells -- Using Natural Fermentation -- Using Biomass -- Using Domestic Wastewater -- Using Industrial Wastewater -- Using Sewage -- Using Crop Residue -- Using Mud -- Using Biogas Slurry -- 9.3.3 Newer Microbial Fuel Cells -- Using Electronophore (Traditional) -- Using Biochar (Latest) -- 9.3.4 Biogas -- Using Sewage -- Using Animal Waste -- Using Animal Manure -- 9.3.5 Biohydrogen -- 9.4 Availability -- 9.4.1 Biomass -- 9.5 Clean Energy -- 9.5.1 Algae -- 9.5.2 Microbial Biophotovoltaic Cells -- Using Algae -- Using Cyanobacteria -- Using Plant Rhizodeposition. , 9.6 Sustainability -- 9.6.1 Biomass -- Crop Residue -- 9.6.2 Camphor -- 9.7 Conclusion -- 9.8 Future Approach -- References -- 10: Applications of Microbes in Food Industry -- 10.1 Introduction -- 10.2 Applications of Microorganisms in Food Industry -- 10.2.1 Baking Industry Applications -- 10.2.2 Alcohol and Beverage Industry Applications -- 10.2.3 Enzyme Production and Its Applications -- 10.2.4 Production of Amino Acids -- 10.2.5 Microbial Detergents as Food Stain Removers -- 10.2.6 Dairy Industry Applications -- 10.2.7 Pigment Production -- 10.2.8 Organic Acid Production -- 10.2.9 Aroma and Flavouring Agents Production -- 10.2.10 Miscellaneous Applications -- Xanthan Gum Production -- Ripening Process -- Food Grade Paper Production -- Single-Cell Protein -- Applications in Other Foods -- 10.3 Summary -- References -- 11: Applications of Microbes in Human Health -- 11.1 Introduction -- 11.2 Human Microbiome -- 11.3 Probiotics -- 11.4 Properties of Probiotics -- 11.5 Probiotics Mechanism of Action -- 11.6 Oral Probiotics -- 11.6.1 Probiotics in Preventing Dental Caries Progression -- 11.6.2 Probiotics in Prevention of Gingival Inflammation -- 11.6.3 Probiotics in Prevention of Periodontal Diseases -- 11.7 Probiotics in Halitosis -- 11.7.1 Probiotics in Oral Mucositis -- 11.7.2 Benefits of Probiotics in General Health -- 11.7.3 Anti-Inflammatory Property -- 11.8 Antimicrobial Properties -- 11.9 Antioxidant Properties -- 11.10 Anticancer Properties -- 11.10.1 Probiotics in Treatment of Upper Respiratory Tract Infections -- 11.10.2 Probiotics in Treatment of Urogenital Infections -- 11.10.3 Probiotics in Improvement of Intestinal Health -- 11.10.4 Probiotics in Treatment of Chemotherapy and Radiotherapy Induced Diarrhea -- 11.10.5 Probiotics in Treatment of Anemia -- 11.11 Treatment and Prevention of Obesity -- 11.12 Probiotics as Immunomodulator. , 11.13 Conclusion -- References -- 12: Applications of Microbes in Soil Health Maintenance for Agricultural Applications -- 12.1 Introduction -- 12.2 Microbial Sources -- 12.2.1 Microalgae and Cyanobacteria -- 12.2.2 Fungi -- 12.2.3 Bacteria -- 12.3 Applications of Microbes -- 12.3.1 Plant Growth Regulators -- 12.3.2 Volatile Organic Compounds (VOCs) -- 12.3.3 Biotic Elicitors -- 12.3.4 Bioremediation -- 12.3.5 Biocontrol -- 12.3.6 Different Types of Microbes -- 12.4 Healthy Soil and Eco-Friendly Environment -- 12.4.1 Biofertilizers -- 12.4.2 Biopesticides -- 12.4.3 Bioherbicides -- 12.4.4 Bioinsecticides -- 12.5 Microbiome and Sustainable Agriculture -- 12.5.1 Benefits of Mycorrhizal Fungi -- 12.5.2 Soil and Environmental Health -- 12.6 Conclusion -- References -- 13: Co-functional Activity of Microalgae: Biological Wastewater Treatment and Bio-fuel Production -- 13.1 Introduction -- 13.2 Wastewater Treatment Using Microalgae -- 13.2.1 Wastewater Composition -- 13.2.2 Nutrient Removal -- Influence of Additives in Wastewater on Nutrient Removal by Microalgae -- 13.2.3 Heavy Metal Removal -- 13.3 Microalgae Cultivation and Harvesting -- 13.3.1 Open Ponds -- 13.3.2 Closed System (Photobioreactor PBRs) -- 13.3.3 Hybrid System -- 13.3.4 Harvesting Techniques -- 13.4 Bio-refinery -- 13.5 Bio-fuel Production Using Microalgae -- 13.5.1 Thermochemical Conversion -- 13.5.2 Biochemical Conversion/Fermentation -- 13.5.3 Chemical Reaction/Transesterification -- 13.5.4 Direct Combustion -- 13.6 Sustainability of Energy from Microalgae -- 13.7 Conclusions -- References -- 14: Microalgae Application in Chemicals, Enzymes, and Bioactive Molecules -- 14.1 Introduction -- 14.2 Microalgae-Based Products -- 14.2.1 Chemical Products -- 14.2.2 Bioactive Molecules -- 14.3 Microalgae Enzymes -- 14.4 Industrial Applications of Microalgae. , 14.5 Conclusions and Future Perspectives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9780323998178
    DDC: 621.312424
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...