GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 40 (11-12). pp. 2167-2177.
    Publication Date: 2018-03-07
    Description: The origin and the spreading of the shallow Mediterranean water core (Ms) in the Iberian basin is discussed with a quasi-synoptic hydrographic data set enhanced by chlorofluoromethane (CFM) measurements. Its characteristic density level is found to be σt = 27.4. Characterized by high temperature and CFM values, Ms enters the Iberian basin in the region of Cape St Vincent between depths of 500–750 dbar. A heat anomaly of 〉11.8 × 109 J m−2 is chosen as the boundary between the presence of Ms and the background field. The core is found in a tongue-like shape as well as in separate isolated eddies of both cyclonic and anticyclonic circulation. Using the optimum multiparameter analysis (Tomczak and Large, 1989, Journal of Geophysical Research, 94, 16141–16149), the North Atlantic Central Water (NACW), which mixes with the Mediterranean outflow to form Ms, turned out to be in the mean 1°C warmer and 0.11 saltier than in regions with minor Mediterranean influence. This points to the Gulf of Cadiz as the origin of Ms, where the Mediterranean oufflows is in contact with NACW of the appropriate characteristics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 41 (2). pp. 263-281.
    Publication Date: 2018-06-19
    Description: In the Deep Western Boundary Current (DWBC) mean velocities obtained by the F11/F12 dating method are far smaller (1–2 cm s−1) than direct velocity measurements (5–20 cm s−1). To resolve this discrepancy, a simple box model is presented that uses the ideas of Pickartet al. (1989, Physical Oceanography, 19, 940–951) to parametrize turbulent diffusion of the current with its surroundings. In contrast to previous models, however, the boundary conditions include all water masses forming the lower part of the DWBC (Denmark Strait Overflow Water, Iceland Scotland Overflow Water and Northeast Atlantic Water). The model-derived mean velocity of the DWBC leads to tracer concentrations that have to fit the observed F11 and F12 distributions, the F11/F12 ratios, and the tritium distributions. Moreover, the model area is extended from south of the Faroe bank along the continental margin of the American continent to 10°S. The model assumes uniform velocity and uniform turbulent mixing along the flow path of the DWBC, and enhanced turbulent mixing in the vicinity of the current compared to the ocean's interior allows the surrounding waters, which remain motionless, to accumulate tracers. The highest mean velocity of the DWBC, which results in model F12, F11, and 3H distributions as well as F11/F12 ratios, compatible to measurements of these tracers along the western boundary, are 4.8 cm s−1. Variations in the composition of the DWBC as well as changes in the time history of the source water masses do not increase the range of the model velocities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 40 (2). pp. 267-291.
    Publication Date: 2018-03-22
    Description: The spreading of Mediterranean Water (MW) released through the Straits of Gibraltar is studied with hydrographic data, oxygen, nutrients and for the first time with chlorofluoromethane (CFM, compounds F11 and F12) distributions along seven sections in the Gulf of Cadiz, and with measurements in the Western Alboran Sea and west of the Gulf. The properties of MW entering the Gulf are deduced from CFM-salinity correlations east and west of the Straits as well as from property-depth profiles in the Western Alboran Sea. At the time of the survey, the outflow originated from depths above the salinity maximum of the Intermediate Water in the Alboran Sea. It turned out that the F11/F12 ratio of the outflow is equal to the ratios found in the Atlantic water in the Gulf of Cadiz; thus the ratio carries no time information in the region. A model is developed to describe mixing of the MW undercurrent with overlying North Atlantic Central Water (NACW) from different depths. The contribution of each layer to the mixing is parameterized by a weighting factor, which has to satisfy the balances of potential temperature (θ), CFMs, oxygen and nutrients in the MW undercurrent. It is shown that entrainment of water from shallower depths into the undercurrent is important near the Iberian Continental Shelf. Farther west and south, the undercurrent mainly mixes with water from near the salinity minimum of the NACW. For regions where the undercurrent has left the bottom, additional mixing with North Atlantic Deep Water (NADW) has to be taken into account. The percentage of MW in the undercurrent decreases from 76% hear the Straits to about 34% at 7°30′W for the lower core (MI) and about 22–24% for the upper core (Mu). Assuming an outflow of undiluted MW through the Straits of 1.0 Sv, the transport of the undercurrent can be calculated by determining an average dilution factor for each section. The undercurrent transports 2.0 Sv just west of the Straits and 3.6 Sv leave the Gulf of Cadiz. At 36°N, 9°54′W, a meddy with unusually high temperatures and salinities below 500 m was found, covering the density range for both cores, Mu and Ml. From the θ−S characteristics and the evaluated mixing scheme of the meddy it appears to have formed near 7°W in the Gulf, a region up to now not proposed in the literature, and moved westward without much further mixing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 45 (4-5). pp. 507-527.
    Publication Date: 2016-10-20
    Description: Hydrographic and tracer [chlorofluorocarbon (CFC), component F11] data in the tropical Atlantic off Brazil taken in spring 1994 are used to describe the development of the water mass characteristics of Antarctic Bottom Water (AABW) between 10 degrees S and 11 degrees N. To compute the AABW transports, geostrophic computations and directly measured velocity fields are combined. Velocity profiles were measured with the Pegasus profiling system and an ADCP attached to the CTD. The F11 increase from 10 degrees S to 11 degrees N, mainly in the upper part of the tracer-poor AABW, reveals the mixing of AABW along its path with the overlying North Atlantic Deep Water, which carries a significant F11 signal in the equatorial Atlantic. While propagating north of 5 degrees S, the AABW shifts to higher salinities at a given temperature. About one-third of the northward flowing AABW at 10 degrees S (4.8 Sv) and at 5 degrees S (4.7 Sv) west of about 31 degrees 30'W enters the Guiana Basin, mainly through the southern half of the Equatorial Channel at 35 degrees W (1.5-1.8 Sv). The other part recirculates and some of it flows through the Romanche Fracture Zone into the eastern Atlantic. In the Guiana Basin, west of 40 degrees W, the sloping topography and the strong, eastward flowing deep western boundary current might prevent the AABW from flowing west: thus it has to turn north at the eastern slope of the Ceara Rise (2.2 Sv). At 44 degrees W, north of the Ceara Rise, AABW flows west in the interior of the basin in a main core near 7 degrees 15'N (1.9 Sv). A net return how of about 0.5 Sv was found north of 8 degrees 43'N. A large fraction of the AABW (1.1 Sv) enters the eastern Atlantic through the Vema Fracture Zone, leaving only 0.3 Sv of AABW for the western Atlantic basins
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: On interannual to decadal times scales, model simulations suggest a strong relationship between anomalies in the deep water formation rate, the strength of the subpolar gyre, and the meridional overturning circulation in the North Atlantic. Whether this is valid, can only be confirmed by continuous, long observational time series. Several measurement components are already in place, but crucial arrays to obtain time series of the meridional volume and heat transport in the subpolar North Atlantic are still missing. Here we summarize the recent developments of the deep water formation rates and the subpolar gyre transports. We discuss how existing observational components in the subpolar North Atlantic could be supplemented to provide long-term monitoring of the meridional heat and volume transport. Through a combined analysis of observations and model results the temporal and spatial scales that had to be covered with instruments are discussed, together with the key regions with the highest variability in the velocity and temperature fields.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-01
    Description: The water column imprint of the hydrothermal plume observed at the Nibelungen field (8 18'S 13 degrees 30'W) is highly variable in space and time. The off-axis location of the site, along the southern boundary of a non-transform ridge offset at the joint between two segments of the southern Mid-Atlantic Ridge, is characterized by complex, rugged topography, and thus favorable for the generation of internal tides, subsequent internal wave breaking, and associated vertical mixing in the water column. We have used towed transects and vertical profiles of stratification, turbidity, and direct current measurements to investigate the strength of turbulent mixing in the vicinity of the vent site and the adjacent rift valley, and its temporal and spatial variability in relation to the plume dispersal. Turbulent diffusivities K(rho) were calculated from temperature inversions via Thorpe scales. Heightened mixing (compared to open ocean values) was observed in the whole rift valley within an order of K(rho) around 10(-3) m(2) s(-1). The mixing close to the vent site was even more elevated, with an average of K(rho) = 4 x 10(-2) m(2) s(-1). The mixing, as well as the flow field, exhibited a strong tidal cycle, with strong currents and mixing at the non-buoyant plume level during ebb flow. Periods of strong mixing were associated with increased internal wave activity and frequent occurrence of turbulent overturns. Additional effects of mixing on plume dispersal include bifurcation of the particle plume, likely as a result of the interplay between the modulated mixing strength and current speed, as well as high frequency internal waves in the effluent plume layer, possibly triggered by the buoyant plume via nonlinear interaction with the elevated background turbulence or penetrative convection. (C) 2010 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-02-09
    Description: Hydrothermal emission of mantle helium appears to be directly related to magma production rate, but other processes can generate methane and hydrogen on mid-ocean ridges. In an on-going effort to characterize these processes in the South Atlantic, the flux and distribution of these gases were investigated in the vicinity of a powerful black smoker recently discovered at 8°17.9' S, 13°30.4' W. The vent lies on the shoulder of an oblique offset in the Mid-Atlantic Ridge and discharges high concentrations of methane and hydrogen. Measurements during expeditions in 2004 and 2006 show that the ratio of CH4 to 3He in the neutrally buoyant plume is quite high, 4 × 108. The CTD stations were accompanied by velocity measurements with lowered acoustic Doppler current profilers (LADCP), and from these data we estimate the methane transport to have been 0.5 mol s− 1 in a WSW-trending plume that seems to develop during the ebb tidal phase. This transport is an order of magnitude greater than the source of CH4 calculated from its concentration in the vent fluid and the rise height of the plume. From this range of methane fluxes, the source of 3He is estimated to be between 0.14 and 1.2 nmol s− 1. In either case, the 3He source is significantly lower than expected from the spreading rate of the Mid-Atlantic Ridge. From the inventory of methane in the rift valley adjacent to the vent, it appears that the average specific rate of oxidation is 2.6 to 23 yr− 1, corresponding to a turnover time between 140 and 16 days. Vertical profiles of methane in the surrounding region often exhibited Gaussian-like distributions, and the variances appear to increase with distance from the vent. Using a Gaussian plume model, we obtained a range of vertical eddy diffusivities between 0.009 and 0.08 m2m2 s− 1. These high values may be due to tidally driven internal waves across the promontory on which the vent is located.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-11-11
    Description: Diese Broschüre gibt einen verständlichen Überblick über den wissenschaftlichen Kenntnisstand zur Golfstromzirkulation. Forscherinnen und Forscher ordnen verwirrende und oft widersprüchliche Informationen ein, die in der Öffentlichkeit diskutiert werden. Die Broschüre bietet Orientierung über plausible Zukunftsszenarien und relevante Forschungsfragen.
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-11-11
    Description: Auf 32 Seiten geben die beiden Wissenschaftsverbände einen verständlichen Überblick zum Meeresspiegelanstieg. 14 Wissenschaftlerinnen und Wissenschaftler unterschiedlicher Forschungseinrichtungen ordnen gemeinsam die Informationen ein, die immer wieder in der Öffentlichkeit diskutiert werden, und erklären die wichtigsten Zusammenhänge und zugrundeliegenden Prozesse in klaren Worten. Damit bietet die Broschüre Orientierung in Bezug auf plausible Zukunftsszenarien, und hilft, die Risiken besser einzuschätzen. Zusätzlich erläutern die Forschenden die Situation an den deutschen Küsten, denn Klimawandel und Meeresspiegelanstieg betreffen auch die Nord- und Ostsee.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...