GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Type of Medium: Online Resource
    Pages: graph. Darst.
    Edition: Online-Ausg. Online-Ressource
    Series Statement: GEOMAR Report N.S. 13
    Language: English , German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    De Gruyter
    In:  Open Geosciences, 4 (4). pp. 531-544.
    Publication Date: 2020-06-15
    Description: The Azores Current originating as a branch of the Gulf Stream is a highly dynamic system in the subtropical North Atlantic. The associated front forms the northeastern boundary of the North Atlantic Subtropical Gyre. In this study we analyzed 42 years of assimilated modeled temperature fields to localize the position of the Azores Front at 22°W and observed a fast north- and southward propagation between 30°N and 37°N on monthly to decadal time scales. The North Atlantic Oscillation with correlated changes of the wind direction was identified as one driving mechanism. As the front is acting as a guide for Rossby waves, the signal of the front’s propagation is transferred to the western Atlantic and, among other atmospheric forcing mechanisms, induces a shifting of the Northern Wall of the Gulf Stream with one year delay. Shallower mixed layer depths in the northern frontal region of the Azores Current caused by the rise of the isotherms lead to nutrient supply and primary production different from those found in the southern frontal region of the current system. A high interannual variability is manifested in deep ocean particle flux, derived from a sediment trap in 2000 m water depth at the mooring site KIEL276 (33°N, 22°W) from 1993 to 2008, which is directly related to the phytoplankton bloom in the euphotic zone. This variability is explained by the propagation of the front and strong variations in the catchment areas of the sediment trap due to the associated eddy activity in the frontal region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-20
    Description: Analysis of the demographic structure of Calanus species in the North Atlantic presents particular difficulties due to the overlapping spatial distributions of four main congeneric species (Calanus finmarchicus, Calanus helgolandicus, Calanus glacialis and Calanus hyperboreus). These species have similar morphologies, making microscopic discrimination only possible between some of the species at late copepodite or adult stages. However, molecular techniques now offer the possibility of screening significant numbers of specimens and unambiguously identifying them to species, regardless of developmental stage. Unfortunately, the processing rate of specimens by molecular methods is still too low to offer a realistic alternative to microscopy for analysis of samples from large field surveys. Here, we outline and test an approach involving the use of molecular methodology in conjunction with conventional microscopy to assess the species assignment of developmental stage abundances of Calanus congeners. Our study has highlighted many important methodological issues. First, it cannot be assumed that the species composition is homogeneous across the development stages; applying proportional species composition of adults to morphologically undistinguishable earlier development stages can result in error. The second important conclusion is that prosome length may be a highly unreliable discriminator of C. finmarchicus and C. glacialis
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-20
    Description: Analysis of the demographic structure of Calanus species in the North Atlantic presents particular difficulties due to the overlapping spatial distributions of four main congeneric species (Calanus finmarchicus, Calanus helgolandicus, Calanus glacialis and Calanus hyperboreus). These species have similar morphologies, making microscopic discrimination only possible between some of the species at late copepodite or adult stages. However, molecular techniques now offer the possibility of screening significant numbers of specimens and unambiguously identifying them to species, regardless of developmental stage. Unfortunately, the processing rate of specimens by molecular methods is still too low to offer a realistic alternative to microscopy for analysis of samples from large field surveys. Here, we outline and test an approach involving the use of molecular methodology in conjunction with conventional microscopy to assess the species assignment of developmental stage abundances of Calanus congeners. Our study has highlighted many important methodological issues. First, it cannot be assumed that the species composition is homogeneous across the development stages; applying proportional species composition of adults to morphologically undistinguishable earlier development stages can result in error. The second important conclusion is that prosome length may be a highly unreliable discriminator of C. finmarchicus and C. glacialis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...