GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • DFG-Senatskommission für Ozeanographie  (1)
  • Frontiers  (1)
  • 1
    Publication Date: 2018-08-24
    Description: Summary The origin of the Ionian Sea lithosphere and the deep structure of its margins remain a little investigated part of the Mediterranean Sea. To shed light on the plate tectonic setting in this central part of southern Europe, R/V METEOR cruise M111 set out to acquire deep penetrating seismic data in the Ionian Sea. M111 formed the core of an amphibious investigation covering the Ionian Sea and island of Sicily. A total of 153 OBS/OBH deployments using French and German instruments were successfully carried out, in addition to 12 land stations installed on Sicily, which recorded the offshore air gun shots. The aim of this onshore-offshore study is to quantify the deep geometry and architecture of the Calabria subduction zone and Ionian Sea lithosphere and to shed light on the nature of the Ionian Sea crust (oceanic crust vs. thinned continental crust). Investigating the structure of the Ionian crust and lithospheric mantle will contribute to unravel the unknown ocean-continent transition and Tethys margin. Analyzing the tectonic activity and active deformation zones is essential for understanding the subduction processes that underlie the neotectonics of the Calabrian subduction zone and earthquake hazard of the Calabria/Sicily region, especially in the vicinity of local decoupling zones.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: In 1964, exploration drilling in the German Sector of the North Sea hit a gas pocket at ∼2900 m depth below the seafloor and triggered a blowout, which formed a 550 m-wide and up to 38 m deep seafloor crater now known as Figge Maar. Although seafloor craters formed by fluid flow are very common structures, little is known about their formation dynamics. Here, we present 2D reflection seismic, sediment echosounder, and multibeam echosounder data from three geoscientific surveys of the Figge Maar blowout crater, which are used to reconstruct its formation. Reflection seismic data support a scenario in which overpressured gas ascended first through the lower part of the borehole and then migrated along steeply inclined strata and faults towards the seafloor. The focused discharge of gas at the seafloor removed up to 4.8 Mt of sediments in the following weeks of vigorous venting. Eyewitness accounts document that the initial phase of crater formation was characterized by the eruptive expulsion of fluids and sediments cutting deep into the substrate. This was followed by a prolonged phase of sediment fluidization and redistribution widening the crater. After fluid discharge ceased, the Figge Maar acted as a sediment trap reducing the crater depth to ∼12 m relative to the surrounding seafloor in 2018, which corresponds to an average sedimentation rate of ∼22,000 m 3 /yr between 1995 and 2018. Hydroacoustic and geochemical data indicate that the Figge Maar nowadays emits primarily biogenic methane, predominantly during low tide. The formation of Figge Maar illustrates hazards related to the formation of secondary fluid pathways, which can bypass safety measures at the wellhead and are thus difficult to control.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...