GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Copernicus Publications on behalf of the European Geosciences Union  (3)
Document type
  • Articles  (3)
Years
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth Surface Dynamics 4 (2016): 193-210, doi:10.5194/esurf-4-193-2016.
    Description: We investigate the controls upon the shape of freely extending spits using a one-contour-line model of shoreline evolution. In contrast to existing frameworks that suggest that spits are oriented in the direction of alongshore sediment transport and that wave refraction around the spit end is the primary cause of recurving, our results suggest that spit shoreline shapes are perhaps best understood as graded features arising from a complex interplay between distinct morphodynamic elements: the headland updrift of the spit, the erosive "neck" (which may be overwashing), and the depositional "hook". Between the neck and the hook lies a downdrift-migrating "fulcrum point" which tends towards a steady-state trajectory set by the angle of maximum alongshore sediment transport. Model results demonstrate that wave climate characteristics affect spit growth; however, we find that the rate of headland retreat exerts a dominant control on spit shape, orientation, and progradation rate. Interestingly, as a spit forms off of a headland, the rate of sediment input to the spit itself emerges through feedbacks with the downdrift spit end, and in many cases faster spit progradation may coincide with reduced sediment input to the spit itself. Furthermore, as the depositional hook rests entirely beyond the maximum in alongshore sediment transport, this shoreline reach is susceptible to high-angle wave instability throughout and, as a result, spit depositional signals may be highly autogenic.
    Description: This research was supported by NSF grants EAR-0952146 and EAR-1424728.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth Surface Dynamics 5 (2017): 585-603, doi:10.5194/esurf-5-585-2017.
    Description: The distinctive plan-view shape of the Ebro Delta coast reveals a rich morphologic history. The degree to which the form and depositional history of the Ebro and other deltas represent autogenic (internal) dynamics or allogenic (external) forcing remains a prominent challenge for paleo-environmental reconstructions. Here we use simple coastal and fluvial morphodynamic models to quantify paleo-environmental changes affecting the Ebro Delta over the late Holocene. Our findings show that these models are able to broadly reproduce the Ebro Delta morphology, with simple fluvial and wave climate histories. Based on numerical model experiments and the preserved and modern shape of the Ebro Delta plain, we estimate that a phase of rapid shoreline progradation began approximately 2100 years BP, requiring approximately a doubling in coarse-grained fluvial sediment supply to the delta. River profile simulations suggest that an instantaneous and sustained increase in coarse-grained sediment supply to the delta requires a combined increase in both flood discharge and sediment supply from the drainage basin. The persistence of rapid delta progradation throughout the last 2100 years suggests an anthropogenic control on sediment supply and flood intensity. Using proxy records of the North Atlantic Oscillation, we do not find evidence that changes in wave climate aided this delta expansion. Our findings highlight how scenario-based investigations of deltaic systems using simple models can assist first-order quantitative paleo-environmental reconstructions, elucidating the effects of past human influence and climate change, and allowing a better understanding of the future of deltaic landforms.
    Description: This study was supported by NSF grant EAR-0952146.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth Surface Dynamics 4 (2016): 871-884, doi:10.5194/esurf-4-871-2016.
    Description: A range of planform morphologies emerge along sandy coastlines as a function of offshore wave climate. It has been implicitly assumed that the morphological response time is rapid compared to the timescales of wave climate change, meaning that coastal morphologies simply reflect the extant wave climate. This assumption has been explored by focussing on the response of two distinctive morphological coastlines – flying spits and cuspate capes – to changing wave climates, using a coastline evolution model. Results indicate that antecedent conditions are important in determining the evolution of morphologies, and that sandy coastlines can demonstrate hysteresis behaviour. In particular, antecedent morphology is particularly important in the evolution of flying spits, with characteristic timescales of morphological adjustment on the order of centuries for large spits. Characteristic timescales vary with the square of aspect ratios of capes and spits; for spits, these timescales are an order of magnitude longer than for capes (centuries vs. decades). When wave climates change more slowly than the relevant characteristic timescales, coastlines are able to adjust in a quasi-equilibrium manner. Our results have important implications for the management of sandy coastlines where decisions may be implicitly and incorrectly based on the assumption that present-day coastlines are in equilibrium with current conditions.
    Description: This work was funded by NERC national capability core funding to the British Geological Survey.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...