GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • NATURE PUBLISHING GROUP  (1)
  • Nature Research  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2015-12-15
    Description: Large amounts of the greenhouse gas methane are released from the seabed but liberation of methane to the atmosphere is mitigated by aerobic methanotrophs in the water column. The size and activity of methanotrophic communities are thought to be mainly determined by nutrient and redox dynamics, but little is known about the effects of water mass transport. Here, we show that cold bottom waters at methane seeps west off Svalbard, which contained a large number of aerobic methanotrophs, were rapidly displaced by warmer waters with a considerably smaller methanotrophic community. This water mass exchange, caused by short-term variations of the West Spitsbergen Current strongly reduced methanotrophic activity. Currents are common at many methane seeps and could thus be a globally important control on methane oxidation in the water column.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geoscientific Model Development 11 (2018): 1849-1871, doi:10.5194/gmd-11-1849-2018.
    Description: We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6), as implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST Subversion repository revision 1234). These include the following: floc dynamics (aggregation and disaggregation in the water column); changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive) sediment; and biodiffusive mixing of bed sediment. These routines supplement existing non-cohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application.
    Description: This work was supported by the US Geological Survey, Coastal and Marine Geology Program and the National Ocean Partnership Program. Courtney K. Harris was supported by the NSF (OCE-1459708, OCE-1061781, and OCE-0536572).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Large amounts of methane are trapped within gas hydrate in subseabed sediments in the Arctic Ocean, and bottom-water warming may induce the release of methane from the seafloor. Yet the effect of seasonal temperature variations on methane seepage activity remains unknown as surveys in Arctic seas are conducted mainly in summer. Here we compare the activity of cold seeps along the gas hydrate stability limit offshore Svalbard during cold (May 2016) and warm (August 2012) seasons. Hydro-acoustic surveys revealed a substantially decreased seepage activity during cold bottom-water conditions, corresponding to a 43% reduction of total cold seeps and methane release rates compared with warmer conditions. We demonstrate that cold seeps apparently hibernate during cold seasons, when more methane gas becomes trapped in the subseabed sediments. Such a greenhouse gas capacitor increases the potential for methane release during summer months. Seasonal bottom-water temperature variations are common on the Arctic continental shelves. We infer that methane-seep hibernation is a widespread phenomenon that is underappreciated in global methane budgets, leading to overestimates in current calculations.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...