GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • Inter Research  (1)
  • 1
    Publication Date: 2018-06-14
    Description: Biological dinitrogen (N2) fixation is the primary input of fixed nitrogen (N) into the marine biosphere, making it an essential process contributing to the biological functions of all organisms. Because biologically available N often limits marine productivity, microbial processes leading to its loss and gain (e.g. denitrification and N2 fixation, respectively) play an important role in global biogeochemical cycles. Bioturbation is known to influence benthic N cycling, most often reported as enhancement of denitrification and a subsequent loss of N2 from the system. N2 fixation has rarely been addressed in bioturbation studies. Instead, sedimentary N2 fixation typically has been considered important in relatively rare, localized habitats such as rhizosphere and phototrophic microbial mat environments. However, the potential for N2 fixation in marine sediments may be more widespread. We show here that nitrogenase activity can be very high (up to 5 nmol C2H4 cm–3 h–1) in coastal sediments bioturbated by the ghost shrimp Neotrypaea californiensis and at depths below 5 cm. Integrated subsurface N2-fixation rates were greater than those previously found for un-vegetated estuarine sediments and were comparable to rates from photosynthetic microbial mats and rhizospheres. Inhibition experiments and genetic analysis showed that this activity was mainly linked to sulfate reduction. Sulfatereducing bacteria (SRB) are widespread and abundant in marine sediments, with many possessing the genetic capacity to fix N2. Our results show that N2 fixation by SRB in bioturbated sediments may be an important process leading to new N input into marine sediments. Given the ubiquity of bioturbation and of SRB in marine sediments, this overlooked benthic N2 fixation may play an important role in marine N and carbon (C) cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 7483-7502, doi:10.5194/bg-12-7483-2015.
    Description: Nitrogen (N) is a key component of fundamental biomolecules. Hence, its cycling and availability are central factors governing the extent of ecosystems across the Earth. In the organic-lean sediment porewaters underlying the oligotrophic ocean, where low levels of microbial activity persist despite limited organic matter delivery from overlying water, the extent and modes of nitrogen transformations have not been widely investigated. Here we use the N and oxygen (O) isotopic composition of porewater nitrate (NO3−) from a site in the oligotrophic North Atlantic (Integrated Ocean Drilling Program – IODP) to determine the extent and magnitude of microbial nitrate production (via nitrification) and consumption (via denitrification). We find that NO3- accumulates far above bottom seawater concentrations (~ 21 μM) throughout the sediment column (up to ~ 50 μM) down to the oceanic basement as deep as 90 m b.s.f. (below sea floor), reflecting the predominance of aerobic nitrification/remineralization within the deep marine sediments. Large changes in the δ15N and δ18O of nitrate, however, reveal variable influence of nitrate respiration across the three sites. We use an inverse porewater diffusion–reaction model, constrained by the N and O isotope systematics of nitrification and denitrification and the porewater NO3- isotopic composition, to estimate rates of nitrification and denitrification throughout the sediment column. Results indicate variability of reaction rates across and within the three boreholes that are generally consistent with the differential distribution of dissolved oxygen at this site, though not necessarily with the canonical view of how redox thresholds separate nitrate regeneration from dissimilative consumption spatially. That is, we provide stable isotopic evidence for expanded zones of co-occurring nitrification and denitrification. The isotope biogeochemical modeling also yielded estimates for the δ15N and δ18O of newly produced nitrate (δ15NNTR (NTR, referring to nitrification) and δ18ONTR), as well as the isotope effect for denitrification (15ϵDNF) (DNF, referring to denitrification), parameters with high relevance to global ocean models of N cycling. Estimated values of δ15NNTR were generally lower than previously reported δ15N values for sinking particulate organic nitrogen in this region. We suggest that these values may be, in part, related to sedimentary N2 fixation and remineralization of the newly fixed organic N. Values of δ18ONTR generally ranged between −2.8 and 0.0 ‰, consistent with recent estimates based on lab cultures of nitrifying bacteria. Notably, some δ18ONTR values were elevated, suggesting incorporation of 18O-enriched dissolved oxygen during nitrification, and possibly indicating a tight coupling of NH4+ and NO2− oxidation in this metabolically sluggish environment. Our findings indicate that the production of organic matter by in situ autotrophy (e.g., nitrification, nitrogen fixation) supplies a large fraction of the biomass and organic substrate for heterotrophy in these sediments, supplementing the small organic-matter pool derived from the overlying euphotic zone. This work sheds new light on an active nitrogen cycle operating, despite exceedingly low carbon inputs, in the deep sedimentary biosphere.
    Description: Funding for this work was provided in part by the International Ocean Drilling Program, Woods Hole Oceanographic Institution and a grant from the Center for Dark Energy Biosphere Investigations (C-DEBI) to SW and WZ and a postdoc fellowship to CB from C-DEBI. WZ was supported in part by NSF grant OCE-1131671.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...