GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply-eroded orogens like the Scandinavian Caledonides allow to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications for a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data constrains the origin of this reflectivity. In this study, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. The core and downhole velocities deviate by up to 2 km/s. However, velocities of mafic rocks are generally in close agreement. Seismic anisotropy increases from about 5 to 26 % at depth, indicating a transition from gneissic to schistose foliation. We suggest that differences in the core and downhole velocities are most likely the result of microcracks mainly due to depressurization. Thus, seismic velocity can help to identify mafic rocks on different scales whereas the velocity signature of other lithologies is obscured in core-derived velocities. Metamorphic foliation on the other hand has a clear expression in seismic anisotropy. These results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere. In particular, they show that core log seismic integration via synthetic seismograms requires wireline logging data in any but mafic lithologies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...