GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria ; p. 4913 .
    Publication Date: 2013-02-18
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Offshore south central Chile (35° S–42° S), the morphology of the lowermost continental slope and trench floor witnesses a voluminous submarine mass-wasting event. The blocky slide body deposited in the Chile Trench at 73°46´ W 35°35´ S was targeted for study during RRS JAMES COOK Cruise JC23 and termed Reloca Slide. Its size of about 24 km3, its steep and high headscarp, the spatial distribution of slide deposits and the cohesive nature of major slide blocks make it interesting to address the issue of tsunami generation. We have obtained seismic reflection data that partly reveal the internal structure of the slide body. Gravity core samples were retrieved that will allow the slide to be dated and linked to the history of sedimentation and slope stability along this particular segment of the Chilean convergent margin. At present we assume a Holocene age for the sliding event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-09
    Description: The Ligurian Basin is located in the Mediterranean Sea to the north-west of Corsica at the transition from the Western Alpine orogen to the Apennine system and was generated by the south-eastward trench retreat of the Apennines–Calabrian subduction zone. Late-Oligocene-to-Miocene rifting caused continental extension and subsidence, leading to the opening of the basin. Yet it remains unclear if rifting caused continental break-up and seafloor spreading. To reveal its lithospheric architecture, we acquired a 130 km long seismic refraction and wide-angle reflection profile in the Ligurian Basin. The seismic line was recorded in the framework of SPP2017 4D-MB, a Priority Programme of the German Research Foundation (DFG) and the German component of the European AlpArray initiative, and trends in a NE–SW direction at the centre of the Ligurian Basin, roughly parallel to the French coastline. The seismic data were recorded on the newly developed GEOLOG recorder, designed at GEOMAR, and are dominated by sedimentary refractions and show mantle Pn arrivals at offsets of up to 70 km and a very prominent wide-angle Mohorovičić discontinuity (Moho) reflection. The main features share several characteristics (e.g. offset range, continuity) generally associated with continental settings rather than documenting oceanic crust emplaced by seafloor spreading. Seismic tomography results are complemented by gravity data and yield a ∼ 6–8 km thick sedimentary cover and the seismic Moho at 11–13 km depth below the sea surface. Our study reveals that the oceanic domain does not extend as far north as previously assumed. Whether Oligocene–Miocene extension led to extremely thinned continental crust or exhumed subcontinental mantle remains unclear. A low grade of mantle serpentinisation indicates a high rate of syn-rift sedimentation. However, rifting failed before oceanic spreading was initiated, and continental crust thickens towards the NE within the northern Ligurian Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...