GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (5)
  • Copernicus Publications (EGU)  (1)
  • 1
    Publication Date: 2019-09-23
    Description: Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to a substantially larger degree than suggested by changes in total organic nitrogen and carbon content. It is uncertain whether archaea may have contributed to sedimentary δ13CAA patterns we observe, and controlled culturing studies will be needed to investigate whether δ13CAA patterns can differentiate bacterial from archeal sources. Further research efforts are also needed to understand how closely δ13CAA patterns derived from hydrolyzable amino acids represent total sedimentary proteineincous material, and more broadly sedimentary organic nitrogen. Overall, however, both our culturing and sediment studies suggest that δ13CAA patterns in sediments will represent a novel proxy for understanding both primary production sources, and the direct bacterial role in the ultimate preservation of sedimentary organic matter.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Marine food webs are highly compartmentalized, and characterizing the trophic niches among consumers is important for predicting how impact from human activities affects the structuring and functioning of marine food webs. Biomarkers such as bulk stable isotopes have proven to be powerful tools to elucidate trophic niches, but they may lack in resolution, particularly when spatiotemporal variability in a system is high. To close this gap, we investigated whether carbon isotope (delta C-13) patterns of essential amino acids (EAAs), also termed delta(13)C(AA)fingerprints, can characterize niche differentiation in a highly dynamic marine system. Specifically, we tested the ability of delta(13)C(AA)fingerprints to differentiate trophic niches among six functional groups and ten individual species in the Baltic Sea. We also tested whether fingerprints of the common zooplanktivorous fishes, herring and sprat, differ among four Baltic Sea regions with different biochemical conditions and phytoplankton assemblages. Additionally, we investigated how these results compared to bulk C and N isotope data for the same sample set. We found significantly different delta(13)C(AA)fingerprints among all six functional groups. Species differentiation was in comparison less distinct, due to partial convergence of the species' fingerprints within functional groups. Herring and sprat displayed region-specific delta(13)C(AA)fingerprints indicating that this approach could be used as a migratory marker. Niche metrics analyses showed that bulk isotope data had a lower power to differentiate between trophic niches than delta(13)C(AA)fingerprinting. We conclude that delta(13)C(AA)fingerprinting has a strong potential to advance our understanding of ecological niches, and trophic linkages from producers to higher trophic levels in dynamic marine systems. Given how management practices of marine resources and habitats are reshaping the structure and function of marine food webs, implementing new and powerful tracer methods are urgently needed to improve the knowledge base for policy makers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...