GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 2 . pp. 189-204.
    Publication Date: 2019-01-21
    Description: Sinking particles, once caught in sediment trap jars, release dissolved elements into the surrounding medium through leaching from their pore fluids, chemical dissolution and the activity of free exoenzymes. This results in an increase in dissolved elements in the trap jar supernatant. Elemental fluxes as traditionally measured by sediment traps underestimate total export when this particle-associated dissolved flux is not considered. The errors introduced are variable and alter both the absolute levels of flux as well as the stoichiometry of export. These errors have been quantified and corrections applied for samples from sediment traps in the North Atlantic based on measurements of excess dissolved carbon, nitrogen, phosphorus, silica and calcium in the supernatant of the collection cups. At the base of the winter mixed layer, on average 90±6% of phosphorus fluxes are found as excess phosphate whereas for carbon and nitrogen dissolved concentrations account for 30 (±8)% and 47(±11)% of total fluxes respectively. Excess dissolved silica is on average 61 (±17)% of total biogenic silica flux. Little (〈10%) of calcium is solubilized. The proportion of dissolved to total flux decreases with trap deployment depth. Calculations of the C:N:P ratios for particles only are well above the Redfield ratios of 106:16:1 (Redfield et al., 1963), although the mid-water dissolved N:P and N:Si values as well as the C:N:P ratios of remineralisation along isopycnals conform to the Redfield ratios at this site. Accounting for dissolved fluxes of all these elements brings the stoichiometry of export in agreement with the Redfield Ratio and with other geochemical estimates of winter mixed layer export. A factor of 3 to 4 higher ratios of organic: inorganic carbon export also implies that the net atmospheric CO2 sequestration by the biological pump is about 50% higher at this site when the dissolved elemental fluxes are considered. Solubilization is thus a process that should be accounted for in protocols used to measure vertical fluxes with sediment traps.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-06
    Description: Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm) were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Microzooplankton composition was determined by light microscopy. Despite a range of up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. During days 3–9 of the experiment the algae community standing stock, measured as chlorophyll a (Chl-a), showed the highest instantaneous grow rates (k=0.37–0.99 d−1) and increased from ca. 2–3 to 6–12 μg l−1, in all mesocosms. Afterwards the phytoplankton standing stock decreased in all mesocosms until the end of the experiment. The microzooplankton standing stock, that was mainly constituted by dinoflagellates and ciliates, varied between 23 and 130 μg C l−1 (corresponding to 1.9 and 10.8 μmol C l−1), peaking on day 13–15, apparently responding to the phytoplankton development. Instantaneous Chl-a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (12–43% of the standing stock d−1) only in the pre-bloom phase when they were in low numbers, and in the post-bloom phase when they were already affected by low nutrients and/or viral lysis. The cyanobacteria populations appeared more affected by microzooplankton grazing which generally removed 20–65% of the standing stock per day.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ISOS
    In:  ISOS, Kiel, Germany, 51 pp.
    Publication Date: 2019-06-14
    Description: The brochure “Building Bridges in Marine Science Education” introduces the stunning spectrum of doctoral research in marine sciences in Kiel and highlights the outstanding features of the ISOS doctoral programme. A central element of the brochure are 10 doctoral candidate profiles that show the “face of the science” by giving doctoral researchers from a broad spectrum of disciplines the opportunity to introduce their work in their own words.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Earth System Sciences have been generating increasingly larger amounts of heterogeneous data in recent years. We identify the need to combine Earth System Sciences with Data Sciences, and give our perspective on how this could be accomplished within the sub-field of Marine Sciences. Marine data hold abundant information and insights that Data Science techniques can reveal. There is high demand and potential to combine skills and knowledge from Marine and Data Sciences to best take advantage of the vast amount of marine data. This can be accomplished by establishing Marine Data Science as a new research discipline. Marine Data Science is an interface science that applies Data Science tools to extract information, knowledge, and insights from the exponentially increasing body of marine data. Marine Data Scientists need to be trained Data Scientists with a broad basic understanding of Marine Sciences and expertise in knowledge transfer. Marine Data Science doctoral researchers need targeted training for these specific skills, a crucial component of which is co-supervision from both parental sciences. They also might face challenges of scientific recognition and lack of an established academic career path. In this paper, we, Marine and Data Scientists at different stages of their academic career, present perspectives to define Marine Data Science as a distinct discipline. We draw on experiences of a Doctoral Research School, MarDATA, dedicated to training a cohort of early career Marine Data Scientists. We characterize the methods of Marine Data Science as a toolbox including skills from their two parental sciences. All of these aim to analyze and interpret marine data, which build the foundation of Marine Data Science.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...