GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (2)
Material
Publisher
  • Copernicus GmbH  (2)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Ocean Science Vol. 13, No. 5 ( 2017-10-25), p. 837-849
    In: Ocean Science, Copernicus GmbH, Vol. 13, No. 5 ( 2017-10-25), p. 837-849
    Abstract: Abstract. A mesoscale eddy's trajectory and its interaction with topography under the planetary β and nonlinear effects in the South China Sea are examined using the MIT General Circulation Model (MITgcm). Warm eddies propagate to the southwest while cold eddies propagate to the northwest. The propagation speed of both warm and cold eddies is about 2.4 km day−1 in the model. The eddy trajectory and its structure are affected by an island or a seamount, in particular, under certain conditions, the eddy may split during the interaction with an island/seamount. We focus this research on two parameters R and S (where R and S are two dimensionless parameters of the island size and submergence depth; R is the ratio of the island radius to the eddy radius, and S is the ratio of the seamount submergence depth to the eddy vertical length). The results of sensitivity experiments with varying island or seamount geometry indicate that the eddy would split in the qualitative range of 1∕4  〈  R  〈  2 and S  〈  1∕5. The scale of the secondary eddy split-off decreases as the island diameter or the seamount submergence depth increases. In the splitting process, besides the off-spring eddy, there are also some filaments or eddies with opposite vorticity appearing around the eddy. Eddy-splitting, therefore, is an important way to transform energy from the mesoscale to sub-mesoscale in the ocean.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Ocean Science Vol. 13, No. 5 ( 2017-10-17), p. 829-836
    In: Ocean Science, Copernicus GmbH, Vol. 13, No. 5 ( 2017-10-17), p. 829-836
    Abstract: Abstract. Some basic features of inertial oscillations and near-inertial internal waves are investigated by simulating a two-dimensional (x − z) rectangular basin (300 km  ×  60 m) driven by a wind pulse. For the homogeneous case, near-inertial motions are pure inertial oscillations. The inertial oscillation shows typical opposite currents between the surface and lower layers, which is formed by the feedback between barotropic waves and inertial currents. For the stratified case, near-inertial internal waves are generated at land boundaries and propagate offshore with higher frequencies, which induce tilting of velocity contours in the thermocline. The inertial oscillation is uniform across the whole basin, except near the coastal boundaries ( ∼  20 km), where it quickly declines to zero. This boundary effect is related to great enhancement of non-linear terms, especially the vertical non-linear term (w ∂ u∕ ∂ z). With the inclusion of near-inertial internal waves, the total near-inertial energy has a slight change, with the occurrence of a small peak at  ∼  50 km, which is similar to previous research. We conclude that, for this distribution of near-inertial energy, the boundary effect for inertial oscillations is primary, and the near-inertial internal wave plays a secondary role. Homogeneous cases with various water depths (50, 40, 30, and 20 m) are also simulated. It is found that near-inertial energy monotonously declines with decreasing water depth, because more energy of the initial wind-driven currents is transferred to seiches by barotropic waves. For the case of 20 m, the seiche energy even slightly exceeds the near-inertial energy. We suppose this is an important reason why near-inertial motions are weak and hardly observed in coastal regions.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...