GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 15 ( 2023-08-08), p. 8659-8681
    Abstract: Abstract. Atmospheric ice nucleation impacts the hydrological cycle and climate by modifying the radiative properties of clouds. To improve our predictive understanding of ice formation, ambient ice-nucleating particles (INPs) need to be collected and characterized. Measurements of INPs at lower latitudes in a remote marine region are scarce. The Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign, in the region of the Azores islands, provided the opportunity to collect particles in the marine boundary layer (MBL) and free troposphere (FT) by aircraft during the campaign's summer and winter intensive operation period. The particle population in samples collected was examined by scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy. The identified INPs were analyzed by scanning electron microscopy with energy-dispersive X-ray analysis. We observed differences in the particle population characteristics in terms of particle diversity, mixing state, and organic volume fraction between seasons, mostly due to dry intrusion events during winter, as well as between the sampling locations of the MBL and FT. These differences are also reflected in the temperature and humidity conditions under which water uptake, immersion freezing (IMF), and deposition ice nucleation (DIN) proceed. Identified INPs reflect typical particle types within the particle population on the samples and include sea salt, sea salt with sulfates, and mineral dust, all associated with organic matter, as well as carbonaceous particles. IMF and DIN kinetics are analyzed with respect to heterogeneous ice nucleation rate coefficients, Jhet, and ice nucleation active site density, ns, as a function of the water criterion Δaw. DIN is also analyzed in terms of contact angles following classical nucleation theory. Derived MBL IMF kinetics agree with previous ACE-ENA ground-site INP measurements. FT particle samples show greater ice nucleation propensity compared to MBL particle samples. This study emphasizes that the types of INPs can vary seasonally and with altitude depending on sampling location, thereby showing different ice nucleation propensities, which is crucial information when representing mixed-phase cloud and cirrus cloud microphysics in models.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 8 ( 2022-04-25), p. 5377-5398
    Abstract: Abstract. Formation of atmospheric ice plays a crucial role in the microphysical evolution of mixed-phase and cirrus clouds and thus climate. How aerosol particles impact ice crystal formation by acting as ice-nucleating particles (INPs) is a subject of intense research activities. To improve understanding of atmospheric INPs, we examined daytime and nighttime particles collected during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign conducted in summer 2017. Collected particles, representative of a remote marine environment, were investigated for their propensity to serve as INPs in the immersion freezing (IMF) and deposition ice nucleation (DIN) modes. The particle population was characterized by chemical imaging techniques such as computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX) and scanning transmission X-ray microscopy with near-edge X-ray absorption fine-structure spectroscopy (STXM/NEXAFS). Four major particle-type classes were identified where internally mixed inorganic–organic particles make up the majority of the analyzed particles. Following ice nucleation experiments, individual INPs were identified and characterized by SEM/EDX. The identified INP types belong to the major particle-type classes consisting of fresh sea salt with organics or processed sea salt containing dust and sulfur with organics. Ice nucleation experiments show IMF events at temperatures as low as 231 K, including the subsaturated regime. DIN events were observed at lower temperatures of 210 to 231 K. IMF and DIN observations were analyzed with regard to activated INP fraction, ice-nucleation active site (INAS) densities, and a water activity-based immersion freezing model (ABIFM) yielding heterogeneous ice nucleation rate coefficients. Observed IMF and DIN events of ice formation and corresponding derived freezing rates demonstrate that the marine boundary layer aerosol particles can serve as INPs under typical mixed-phase and cirrus cloud conditions. The derived IMF and DIN parameterizations allow for implementation in cloud and climate models to evaluate predictive effects of atmospheric ice crystal formation.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...