GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (3)
Material
Publisher
  • Copernicus GmbH  (3)
Language
Years
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  The Cryosphere Vol. 10, No. 4 ( 2016-08-25), p. 1883-1896
    In: The Cryosphere, Copernicus GmbH, Vol. 10, No. 4 ( 2016-08-25), p. 1883-1896
    Abstract: Abstract. In many ice streams, basal resistance varies in space and time due to the dynamically evolving properties of subglacial till. These variations can cause internally generated oscillations in ice-stream flow. However, the potential for such variations in basal properties is not considered by conventional theories of grounding-line stability on retrograde bed slopes, which assume that bed properties are static in time. Using a flow-line model, we show how internally generated, transient variations in ice-stream state interact with retrograde bed slopes. In contrast to predictions from the theory of the marine ice-sheet instability, our simulated grounding line is able to persist and reverse direction of migration on a retrograde bed when undergoing oscillations in the grounding-line position. In turn, the presence of a retrograde bed may also suppress or reduce the amplitude of internal oscillations in ice-stream state. We explore the physical mechanisms responsible for these behaviors and discuss the implications for observed grounding-line migration in West Antarctica.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2023
    In:  Nonlinear Processes in Geophysics Vol. 30, No. 3 ( 2023-07-21), p. 299-309
    In: Nonlinear Processes in Geophysics, Copernicus GmbH, Vol. 30, No. 3 ( 2023-07-21), p. 299-309
    Abstract: Abstract. Abrupt and irreversible winter Arctic sea ice loss may occur under anthropogenic warming due to the disappearance of a sea ice equilibrium at a threshold value of CO2, commonly referred to as a tipping point. Previous work has been unable to conclusively identify whether a tipping point in winter Arctic sea ice exists because fully coupled climate models are too computationally expensive to run to equilibrium for many CO2 values. Here, we explore the deviation of sea ice from its equilibrium state under realistic rates of CO2 increase to demonstrate for the first time how a few time-dependent CO2 experiments can be used to predict the existence and timing of sea ice tipping points without running the model to steady state. This study highlights the inefficacy of using a single experiment with slow-changing CO2 to discover changes in the sea ice steady state and provides a novel alternate method that can be developed for the identification of tipping points in realistic climate models.
    Type of Medium: Online Resource
    ISSN: 1607-7946
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2078085-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Climate of the Past Vol. 14, No. 10 ( 2018-10-18), p. 1441-1462
    In: Climate of the Past, Copernicus GmbH, Vol. 14, No. 10 ( 2018-10-18), p. 1441-1462
    Abstract: Abstract. Over the past 0.8 million years, 100 kyr ice ages have dominated Earth's climate with geological evidence suggesting the last glacial inception began in the mountains of Baffin Island. Currently, state-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, possibly due in part to their coarse horizontal resolution and the neglect of ice flow dynamics in some models. We attempt to address the role of regional feedbacks in the initial inception problem on Baffin Island by asynchronously coupling the Weather Research and Forecast (WRF) model, configured as a high-resolution inner domain over Baffin and an outer domain incorporating much of North America, to an ice flow model using the shallow ice approximation. The mass balance is calculated from WRF simulations and used to drive the ice model, which updates the ice extent and elevation, that then serve as inputs to the next WRF run. We drive the regional WRF configuration using atmospheric boundary conditions from 1986 that correspond to a relatively cold summer, and with 115 kya insolation. Initially, ice accumulates on mountain glaciers, driving downslope ice flow which expands the size of the ice caps. However, continued iterations of the atmosphere and ice models reveal a stagnation of the ice sheet on Baffin Island, driven by melting due to warmer temperatures at the margins of the ice caps. This warming is caused by changes in the regional circulation that are forced by elevation changes due to the ice growth. A stabilizing feedback between ice elevation and atmospheric circulation thus prevents full inception from occurring.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...