GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (2)
  • 1
    In: Biogeosciences, Copernicus GmbH, Vol. 18, No. 23 ( 2021-12-13), p. 6349-6375
    Abstract: Abstract. Glacial meltwater from the western Antarctic Ice Sheet is hypothesized to be an important source of cryospheric iron, fertilizing the Southern Ocean, yet its trace-metal composition and factors that control its dispersal remain poorly constrained. Here we characterize meltwater iron sources in a heavily glaciated western Antarctic Peninsula (WAP) fjord. Using dissolved and particulate ratios of manganese to iron in meltwaters, porewaters, and seawater, we show that surface glacial melt and subglacial plumes contribute to the seasonal cycle of iron and manganese within a fjord still relatively unaffected by climate-change-induced glacial retreat. Organic ligands derived from the phytoplankton bloom and the glaciers bind dissolved iron and facilitate the solubilization of particulate iron downstream. Using a numerical model, we show that buoyant plumes generated by outflow from the subglacial hydrologic system, enriched in labile particulate trace metals derived from a chemically modified crustal source, can supply iron to the fjord euphotic zone through vertical mixing. We also show that prolonged katabatic wind events enhance export of meltwater out of the fjord. Thus, we identify an important atmosphere–ice–ocean coupling intimately tied to coastal iron biogeochemistry and primary productivity along the WAP.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Atmospheric Chemistry and Physics Vol. 21, No. 3 ( 2021-02-12), p. 2105-2124
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 3 ( 2021-02-12), p. 2105-2124
    Abstract: Abstract. Size-segregated particulate air samples were collected during the austral summer of 2016–2017 at Palmer Station on Anvers Island, western Antarctic Peninsula, to characterize trace elements in aerosols. Trace elements in aerosol samples – including Al, P, Ca, Ti, V, Mn, Ni, Cu, Zn, Ce, and Pb – were determined by total digestion and a sector field inductively coupled plasma mass spectrometer (SF-ICP-MS). The crustal enrichment factors (EFcrust) and k-means clustering results of particle-size distributions show that these elements are derived primarily from three sources: (1) regional crustal emissions, including possible resuspension of soils containing biogenic P, (2) long-range transport, and (3) sea salt. Elements derived from crustal sources (Al, P, Ti, V, Mn, Ce) with EFcrust〈10 were dominated by the coarse-mode particles (〉1.8 µm) and peaked around 4.4 µm in diameter, reflecting the regional contributions. Non-crustal elements (Ca, Ni, Cu, Zn, Pb) showed EFcrust〉10. Aerosol Pb was primarily dominated by fine-mode particles, peaking at 0.14–0.25 µm, and likely was impacted by air masses from southern South America based on air mass back trajectories. However, Ni, Cu, and Zn were not detectable in most size fractions and did not present clear size patterns. Sea-salt elements (Ca, Na+, K+) showed a single-mode distribution and peaked at 2.5–4.4 µm. The estimated dry deposition fluxes of mineral dust for the austral summer, based on the particle-size distributions of Al measured at Palmer Station, ranged from 0.65 to 28 mg m−2 yr−1 with a mean of 5.5±5.0 mg m−2 yr−1. The estimated dry deposition fluxes of the target trace elements in this study were lower than most fluxes reported previously for coastal Antarctica and suggest that atmospheric input of trace elements through dry deposition processes may play a minor role in determining trace element concentrations in surface seawater over the continental shelf of the western Antarctic Peninsula.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...