GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Climate of the Past, Copernicus GmbH, Vol. 14, No. 11 ( 2018-11-12), p. 1687-1706
    Abstract: Abstract. High-altitude peat bogs and lacustrine records are very sensitive to climate changes and atmospheric dust input. Recent studies have shown a close relationship between regional climate aridity and enhanced eolian input to lake sediments. However, changes in regional-scale dust fluxes due to climate variability at short scales and how alpine environments were impacted by climatic- and human-induced environmental changes are not completely understood. Here we present a multi-proxy (palynological, geochemical and magnetic susceptibility) lake sediment record of climate variability in the Sierra Nevada (southeastern Iberian Peninsula) over the Holocene. Magnetic susceptibility and geochemical proxies obtained from the high mountain lake record of Laguna Hondera evidence humid conditions during the early Holocene, while a trend towards more arid conditions is recognized since ∼7000 cal yr BP, with enhanced Saharan eolian dust deposition until the present. This trend towards enhanced arid conditions was modulated by millennial-scale climate variability. Relative humid conditions occurred during the Iberian Roman Humid Period (2600–1450 cal yr BP) and predominantly arid conditions occurred during the Dark Ages and the Medieval Climate Anomaly (1450–650 cal yr BP). The Little Ice Age (650–150 cal yr BP) is characterized in the Laguna Hondera record by an increase in runoff and a minimum in eolian input. In addition, we further suggest that human impact in the area is noticed through the record of Olea cultivation, Pinus reforestation and Pb pollution during the Industrial Period (150 cal yr BP–present). Furthermore, we estimated that the correlation between Zr and Ca concentrations stands for Saharan dust input to the Sierra Nevada lake records. These assumptions support that present-day biochemical observations, pointing to eolian input as the main inorganic nutrient source for oligotrophic mountain lakes, are comparable to the past record of eolian supply to these high-altitude lakes.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Climate of the Past, Copernicus GmbH, Vol. 16, No. 1 ( 2020-02-06), p. 245-263
    Abstract: Abstract. Alpine ecosystems of the southern Iberian Peninsula are among the most vulnerable and the first to respond to modern climate change in southwestern Europe. While major environmental shifts have occurred over the last ∼1500 years in these alpine ecosystems, only changes in the recent centuries have led to abrupt environmental responses, but factors imposing the strongest stress have been unclear until now. To understand these environmental responses, this study, for the first time, has calibrated an algal lipid-derived temperature proxy (based on long-chain alkyl diols) to instrumental historical data extending alpine temperature reconstructions to 1500 years before present. These novel results highlight the enhanced effect of greenhouse gases on alpine temperatures during the last ∼200 years and the long-term modulating role of solar forcing. This study also shows that the warming rate during the 20th century (∼0.18 ∘C per decade) was double that of the last stages of the Little Ice Age (∼0.09 ∘C per decade), even exceeding temperature trends of the high-altitude Alps during the 20th century. As a consequence, temperature exceeded the preindustrial record in the 1950s, and it has been one of the major forcing processes of the recent enhanced change in these alpine ecosystems from southern Iberia since then. Nevertheless, other factors reducing the snow and ice albedo (e.g., atmospheric deposition) may have influenced local glacier loss, since almost steady climate conditions predominated from the middle 19th century to the first decades of the 20th century.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...