GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2011
    In:  The Cryosphere Vol. 5, No. 2 ( 2011-04-14), p. 341-348
    In: The Cryosphere, Copernicus GmbH, Vol. 5, No. 2 ( 2011-04-14), p. 341-348
    Abstract: Abstract. Warming in the Arctic during the past several decades has caused glaciers to thin and retreat, and recent mass loss from the Greenland Ice Sheet is well documented. Local glaciers peripheral to the ice sheet are also retreating, but few mass-balance observations are available to quantify that retreat and determine the extent to which these glaciers are out of equilibrium with present-day climate. Here, we document record mass loss in 2009/10 for the Mittivakkat Gletscher (henceforth MG), the only local glacier in Greenland for which there exist long-term observations of both the surface mass balance and glacier front fluctuations. We attribute this mass loss primarily to record high mean summer (June–August) temperatures in combination with lower-than-average winter precipitation. Also, we use the 15-yr mass-balance record to estimate present-day and equilibrium accumulation-area ratios for the MG. We show that the glacier is significantly out of balance and will likely lose at least 70% of its current area and 80% of its volume even in the absence of further climate changes. Temperature records from coastal stations in Southeast Greenland suggest that recent MG mass losses are not merely a local phenomenon, but are indicative of glacier changes in the broader region. Mass-balance observations for the MG therefore provide unique documentation of the general retreat of Southeast Greenland's local glaciers under ongoing climate warming.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2011
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2010
    In:  The Cryosphere Vol. 4, No. 4 ( 2010-10-26), p. 453-465
    In: The Cryosphere, Copernicus GmbH, Vol. 4, No. 4 ( 2010-10-26), p. 453-465
    Abstract: Abstract. Terrestrial inputs of freshwater flux to Sermilik Fjord, SE Greenland, were estimated, indicating ice discharge to be the dominant source of freshwater. A freshwater flux of 40.4 ± 4.9×109 m3 y−1 was found (1999–2008), with an 85% contribution originated from ice discharge (65% alone from Helheim Glacier), 11% from terrestrial surface runoff (from melt water and rain), 3% from precipitation at the fjord surface area, and 1% from subglacial geothermal and frictional melting due to basal ice motion. The results demonstrate the dominance of ice discharge as a primary mechanism for delivering freshwater to Sermilik Fjord. Time series of ice discharge for Helheim Glacier, Midgård Glacier, and Fenris Glacier were calculated from satellite-derived average surface velocity, glacier width, and estimated ice thickness, and fluctuations in terrestrial surface freshwater runoff were simulated based on observed meteorological data. These simulations were compared and bias corrected against independent glacier catchment runoff observations. Modeled runoff to Sermilik Fjord was variable, ranging from 2.9 ± 0.4×109 m3 y−1 in 1999 to 5.9 ± 0.9×109 m3 y−1 in 2005. The sub-catchment runoff of the Helheim Glacier region accounted for 25% of the total runoff to Sermilik Fjord. The runoff distribution from the different sub-catchments suggested a strong influence from the spatial variation in glacier coverage, indicating high runoff volumes, where glacier cover was present at low elevations.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2010
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2013
    In:  The Cryosphere Vol. 7, No. 5 ( 2013-10-02), p. 1565-1577
    In: The Cryosphere, Copernicus GmbH, Vol. 7, No. 5 ( 2013-10-02), p. 1565-1577
    Abstract: Abstract. Most glaciers and ice caps (GIC) are out of balance with the current climate. To return to equilibrium, GIC must thin and retreat, losing additional mass and raising sea level. Because glacier observations are sparse and geographically biased, there is an undersampling problem common to all global assessments. Here, we further develop an assessment approach based on accumulation-area ratios (AAR) to estimate committed mass losses and analyze the undersampling problem. We compiled all available AAR observations for 144 GIC from 1971 to 2010, and found that most glaciers and ice caps are farther from balance than previously believed. Accounting for regional and global undersampling errors, our model suggests that GIC are committed to additional losses of 32 ± 12% of their area and 38 ± 16% of their volume if the future climate resembles the climate of the past decade. These losses imply global mean sea-level rise of 163 ± 69 mm, assuming total glacier volume of 430 mm sea-level equivalent. To reduce the large uncertainties in these projections, more long-term glacier measurements are needed in poorly sampled regions.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2013
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Cryosphere, Copernicus GmbH, Vol. 4, No. 2 ( 2010-06-29), p. 231-242
    Abstract: Abstract. This study provides insights into surface mass-balance (SMB) and runoff exiting the Watson River drainage basin, Kangerlussuaq, West Greenland during a 30 year period (1978/1979–2007/2008) when the climate experienced increasing temperatures and precipitation. The 30-year simulations quantify the terrestrial freshwater output from part of the Greenland Ice Sheet (GrIS) and the land between the GrIS and the ocean, in the context of global warming and increasing GrIS surface melt. We used a snow-evolution modeling system (SnowModel) to simulate the winter accumulation and summer ablation processes, including runoff and SMB, of the ice sheet: indicating that the simulated equilibrium line altitude (ELA) was in accordance with independent observations. To a large extent, the SMB fluctuations could be explained by changes in net precipitation (precipitation minus evaporation and sublimation), with 8 out of 30 years having negative SMB, mainly because of relatively low annual net precipitation. The overall trend in net precipitation and runoff increased significantly, while SMB increased insignificantly throughout the simulation period, leading to enhanced precipitation of 0.59 km3 w.eq. (or ~60%), runoff of 0.43 km3 w.eq. (or ~55%), and SMB of 0.16 km3 w.eq. (or ~85%). Runoff rose on average from 0.80 km3 w.eq. in 1978/1979 to 1.23 km3 w.eq. in 2007/2008. The GrIS satellite-derived melt-extent increased significantly, and the melting intensification occurred simultaneously with the increase in local Kangerlussuaq runoff, indicating that satellite data can be used as a proxy (r2=0.64) for runoff from the Kangerlussuaq drainage area.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2010
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2012
    In:  The Cryosphere Vol. 6, No. 3 ( 2012-06-06), p. 625-639
    In: The Cryosphere, Copernicus GmbH, Vol. 6, No. 3 ( 2012-06-06), p. 625-639
    Abstract: Abstract. Landsat imagery was applied to elucidate glacier fluctuations of land- and marine-terminating outlet glaciers from the Greenland Ice Sheet (GrIS) and local land-terminating glaciers and ice caps (GIC) peripheral to the GrIS in the Ammassalik region, Southeast Greenland, during the period 1972–2011. Data from 21 marine-terminating glaciers (including the glaciers Helheim, Midgaard, and Fenris), the GrIS land-terminating margin, and 35 GIC were examined and compared to observed atmospheric air temperatures, precipitation, and reconstructed ocean water temperatures (at 400 m depth in the Irminger Sea). Here, we document that net glacier recession has occurred since 1972 in the Ammassalik region for all glacier types and sizes, except for three GIC. The land-terminating GrIS and GIC reflect lower marginal and areal changes than the marine-terminating outlet glaciers. The mean annual land-terminating GrIS and GIC margin recessions were about three to five times lower than the GrIS marine-terminating recession. The marine-terminating outlet glaciers had an average net frontal retreat for 1999–2011 of 0.098 km yr−1, which was significantly higher than in previous sub-periods 1972–1986 and 1986–1999. For the marine-terminating GrIS, the annual areal recession rate has been decreasing since 1972, while increasing for the land-terminating GrIS since 1986. On average for all the observed GIC, a mean net frontal retreat for 1986–2011 of 0.010 ± 0.006 km yr−1 and a mean areal recession of around 1% per year occurred; overall for all observed GIC, a mean recession rate of 27 ± 24% occurred based on the 1986 GIC area. Since 1986, five GIC melted away in the Ammassalik area.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2012
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Cryosphere, Copernicus GmbH, Vol. 14, No. 11 ( 2020-11-11), p. 3935-3958
    Abstract: Abstract. Observations and models agree that the Greenland Ice Sheet (GrIS) surface mass balance (SMB) has decreased since the end of the 1990s due to an increase in meltwater runoff and that this trend will accelerate in the future. However, large uncertainties remain, partly due to different approaches for modelling the GrIS SMB, which have to weigh physical complexity or low computing time, different spatial and temporal resolutions, different forcing fields, and different ice sheet topographies and extents, which collectively make an inter-comparison difficult. Our GrIS SMB model intercomparison project (GrSMBMIP) aims to refine these uncertainties by intercomparing 13 models of four types which were forced with the same ERA-Interim reanalysis forcing fields, except for two global models. We interpolate all modelled SMB fields onto a common ice sheet mask at 1 km horizontal resolution for the period 1980–2012 and score the outputs against (1) SMB estimates from a combination of gravimetric remote sensing data from GRACE and measured ice discharge; (2) ice cores, snow pits and in situ SMB observations; and (3) remotely sensed bare ice extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting model deficiencies in an accurate representation of the GrIS ablation zone extent and processes related to surface melt and runoff. Overall, polar regional climate models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of the same order as RCMs compared with observations and therefore remain useful tools for long-term simulations or coupling with ice sheet models. Finally, it is interesting to note that the ensemble mean of the 13 models produces the best estimate of the present-day SMB relative to observations, suggesting that biases are not systematic among models and that this ensemble estimate can be used as a reference for current climate when carrying out future model developments. However, a higher density of in situ SMB observations is required, especially in the south-east accumulation zone, where the model spread can reach 2 m w.e. yr−1 due to large discrepancies in modelled snowfall accumulation.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Earth System Science Data, Copernicus GmbH, Vol. 15, No. 4 ( 2023-04-20), p. 1597-1616
    Abstract: Abstract. Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9 mm to global mean sea level, with the rate of mass loss rising from 105 Gt yr−1 between 1992 and 1996 to 372 Gt yr−1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9 Gt yr−1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86 Gt yr−1 in 2017 to 444 Gt yr−1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9 Gt yr−1) and, to a lesser extent, from the Antarctic Peninsula (13±5 Gt yr−1). East Antarctica remains close to a state of balance, with a small gain of 3±15 Gt yr−1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at https://doi.org/10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...