GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Earth System Science Data, Copernicus GmbH, Vol. 10, No. 3 ( 2018-08-21), p. 1491-1501
    Abstract: Abstract. Small changes in the radiation budget at the earth's surface can lead to large climatological responses when persistent over time. With the increasing debate on anthropogenic influences on climatic processes during the 1980s the need for accurate radiometric measurements with higher temporal resolution was identified, and it was determined that the existing measurement networks did not have the resolution or accuracy required to meet this need. In 1988 the WMO therefore proposed the establishment of a new international Baseline Surface Radiation Network (BSRN), which should collect and centrally archive high-quality ground-based radiation measurements in 1 min resolution. BSRN began its work in 1992 with 9 stations; currently (status 2018-01-01), the network comprises 59 stations (delivering data to the archive) and 9 candidates (stations recently accepted into the network with data forthcoming to the archive) distributed over all continents and oceanic environments. The BSRN database is the World Radiation Monitoring Center (WRMC). It is hosted at the Alfred Wegener Institute (AWI) in Bremerhaven, Germany, and now offers more than 10 300 months of data from the years 1992 to 2017. All data are available at https://doi.org/10.1594/PANGAEA.880000 free of charge.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 1 ( 2019-01-03), p. 35-50
    Abstract: Abstract. High-resolution, laboratory, absorption spectra of the a1Δg←X3Σg- oxygen (O2) band measured using cavity ring-down spectroscopy were fitted using the Voigt and speed-dependent Voigt line shapes. We found that the speed-dependent Voigt line shape was better able to model the measured absorption coefficients than the Voigt line shape. We used these line shape models to calculate absorption coefficients to retrieve atmospheric total columns abundances of O2 from ground-based spectra from four Fourier transform spectrometers that are a part of the Total Carbon Column Observing Network (TCCON). Lower O2 total columns were retrieved with the speed-dependent Voigt line shape, and the difference between the total columns retrieved using the Voigt and speed-dependent Voigt line shapes increased as a function of solar zenith angle. Previous work has shown that carbon dioxide (CO2) total columns are better retrieved using a speed-dependent Voigt line shape with line mixing. The column-averaged dry-air mole fraction of CO2 (XCO2) was calculated using the ratio between the columns of CO2 and O2 retrieved (from the same spectra) with both line shapes from measurements taken over a 1-year period at the four sites. The inclusion of speed dependence in the O2 retrievals significantly reduces the air mass dependence of XCO2, and the bias between the TCCON measurements and calibrated integrated aircraft profile measurements was reduced from 1 % to 0.4 %. These results suggest that speed dependence should be included in the forward model when fitting near-infrared CO2 and O2 spectra to improve the accuracy of XCO2 measurements.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Weather and Climate Dynamics Vol. 2, No. 4 ( 2021-12-23), p. 1303-1324
    In: Weather and Climate Dynamics, Copernicus GmbH, Vol. 2, No. 4 ( 2021-12-23), p. 1303-1324
    Abstract: Abstract. Human activity in the Arctic is increasing as new regions become accessible, with a consequent need for improved understanding of hazardous weather there. Arctic cyclones are the major weather systems affecting the Arctic environment during summer, including the sea ice distribution. Mesoscale to synoptic-scale tropopause polar vortices (TPVs) frequently occur in polar regions and are a proposed mechanism for Arctic cyclone genesis and intensification. However, while the importance of pre-existing tropopause-level features for cyclone development, as well as being an integral part of the three-dimensional mature cyclone structure, is well established in the mid-latitudes, evidence of the importance of pre-existing TPVs for Arctic cyclone development is mainly limited to a few case studies. Here we examine the extent to which Arctic cyclone growth is coupled to TPVs by analysing a climatology of summer Arctic cyclones and TPVs produced by tracking both features in the latest ECMWF reanalysis (ERA5). The annual counts of Arctic cyclones and TPVs are significantly correlated for features with genesis either within or outside the Arctic, implying that TPVs have a role in the development of Arctic cyclones. However, only about one-third of Arctic cyclones have their genesis or intensify while a TPV of Arctic origin is (instantaneously) within about twice the Rossby radius of the cyclone centre. Consistent with the different track densities of the full sets of Arctic cyclones and TPVs, cyclones with TPVs within range throughout their intensification phase (matched cyclones) track preferentially over the Arctic Ocean along the North American coastline and Canadian Arctic Archipelago. In contrast, cyclones intensifying distant from any TPV (unmatched cyclones) track preferentially along the northern coast of Eurasia. Composite analysis reveals the presence of a distinct relative vorticity maximum at and above the tropopause level associated with the TPV throughout the intensification period for matched cyclones and that these cyclones have a reduced upstream tilt compared to unmatched cyclones. Interaction of cyclones with TPVs has implications for the predictability of Arctic weather, given the long lifetime but relatively small spatial scale of TPVs compared with the density of the polar observation network.
    Type of Medium: Online Resource
    ISSN: 2698-4016
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2982467-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Weather and Climate Dynamics Vol. 3, No. 3 ( 2022-09-22), p. 1097-1112
    In: Weather and Climate Dynamics, Copernicus GmbH, Vol. 3, No. 3 ( 2022-09-22), p. 1097-1112
    Abstract: Abstract. Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. Key hazards driving these risks are extreme near-surface winds, high ocean waves, and heavy precipitation, which are dependent on the structure and development of intense synoptic-scale cyclones. This study aims to describe the typical lifetime, structure, and development of a large sample of past intense winter (DJF) and summer (JJA) synoptic-scale Arctic cyclones using a storm compositing methodology applied to the ERA5 reanalysis. Results show that the composite development and structure of intense summer Arctic cyclones are different from those of intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from those described in conceptual models of extra-tropical and Arctic cyclones. The composite structure of intense summer Arctic cyclones shows that they typically undergo a structural transition around the time of maximum intensity from having a baroclinic structure to an axi-symmetric cold-core structure throughout the troposphere, with a low-lying tropopause and large positive temperature anomaly in the lower stratosphere. Summer Arctic cyclones are also found to have longer lifetimes than winter Arctic and North Atlantic Ocean extra-tropical cyclones, potentially causing prolonged hazardous and disruptive weather conditions in the Arctic.
    Type of Medium: Online Resource
    ISSN: 2698-4016
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2982467-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...