GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (6)
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 5 ( 2023-03-09), p. 3065-3081
    Abstract: Abstract. Molecular markers in organic aerosol (OA) provide specific source information on PM2.5, and the contribution of cooking organic aerosols to OA is significant, especially in urban environments. However, the low time resolution of offline measurements limits the effectiveness when interpreting the tracer data, the diurnal variation in cooking emissions and the oxidation process. In this study, we used online thermal desorption aerosol gas chromatography and mass spectrometry (TAG) to measure organic molecular markers in fine particulate matter (PM2.5) at an urban site in Changzhou, China. The concentrations of saturated fatty acids (sFAs), unsaturated fatty acids (uFAs) and oxidative decomposition products (ODPs) of unsaturated fatty acids were measured every 2 h to investigate the temporal variations and the oxidative decomposition characteristics of uFAs in urban environments. The average concentration of total fatty acids (TFAs, sum of sFAs and uFAs) was measured to be 105.70±230.28 ng m−3. The average concentration of TFAs in the polluted period (PM2.5≥35 µg m−3) was 147.06 ng m−3, which was 4.2 times higher than that in the clean period (PM2.5〈35 µg m−3) and higher than the enhancement of PM2.5 (2.2 times) and organic carbon (OC) (2.0 times) concentrations when comparing the polluted period to the clean period. The mean concentration of cooking aerosol in the polluted period (4.0 µg m−3) was about 5.3 times higher than that in the clean period (0.75 µg m−3), which was similar to the trend of fatty acids. Fatty acids showed a clear diurnal variation. Linoleic acid / stearic acid and oleic acid / stearic acid ratios were significantly higher at dinnertime and closer to the cooking source profile. By performing backward trajectory clustering analysis, under the influence of short-distance air masses from surrounding areas, the concentrations of TFAs and PM2.5 were relatively high, while under the influence of air masses from easterly coastal areas, the oxidation degree of uFAs emitted from local culinary sources was higher. The effective rate constants (kO) for the oxidative degradation of oleic acid were estimated to be 0.08–0.57 h−1, which were lower than kL (the estimated effective rate constants of linoleic acid, 0.16–0.80 h−1). Both kO and kL showed a significant positive correlation with O3, indicating that O3 was the main nighttime oxidant for uFAs in the city of Changzhou. Using fatty acids as tracers, cooking was estimated to contribute an average of 4.6 % to PM2.5 concentrations, increasing to 7.8 % at 20:00 UTC+8 h. Cooking was an important source of OC, contributing 8.1 %, higher than the contribution of PM2.5. This study investigates the variation in the concentrations and oxidative degradation of fatty acids and corresponding oxidation products in ambient air, which can be a guide for the refinement of aerosol source apportionment and provide scientific support for the development of cooking source control policies.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biogeosciences, Copernicus GmbH, Vol. 13, No. 11 ( 2016-06-14), p. 3427-3439
    Abstract: Abstract. Soil organic matter (SOM) forms the largest terrestrial pool of carbon outside of sedimentary rocks. Radiocarbon is a powerful tool for assessing soil organic matter dynamics. However, due to the nature of the measurement, extensive 14C studies of soil systems remain relatively rare. In particular, information on the extent of spatial and temporal variability in 14C contents of soils is limited, yet this information is crucial for establishing the range of baseline properties and for detecting potential modifications to the SOM pool. This study describes a comprehensive approach to explore heterogeneity in bulk SOM 14C in Swiss forest soils that encompass diverse landscapes and climates. We examine spatial variability in soil organic carbon (SOC) 14C, SOC content and C : N ratios over both regional climatic and geologic gradients, on the watershed- and plot-scale and within soil profiles. Results reveal (1) a relatively uniform radiocarbon signal across climatic and geologic gradients in Swiss forest topsoils (0–5 cm, Δ14C  =  130 ± 28.6, n = 12 sites), (2) similar radiocarbon trends with soil depth despite dissimilar environmental conditions, and (3) micro-topography dependent, plot-scale variability that is similar in magnitude to regional-scale variability (e.g., Gleysol, 0–5 cm, Δ14C 126 ± 35.2, n = 8 adjacent plots of 10  ×  10 m). Statistical analyses have additionally shown that Δ14C signature in the topsoil is not significantly correlated to climatic parameters (precipitation, elevation, primary production) except mean annual temperature at 0–5 cm. These observations have important consequences for SOM carbon stability modelling assumptions, as well as for the understanding of controls on past and current soil carbon dynamics.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Biogeosciences Vol. 16, No. 18 ( 2019-09-24), p. 3605-3619
    In: Biogeosciences, Copernicus GmbH, Vol. 16, No. 18 ( 2019-09-24), p. 3605-3619
    Abstract: Abstract. Mineralization potential is a key property for assessing carbon substrate's degradability and mineralization in biogeochemical models and studies. While mineralization potential is widely examined under controlled conditions, whether and how it is influenced by the past aridity of sample's origins remain poorly constrained, which is important for an accurate assessment and prediction of future CO2 emissions. Here we collect topsoils and subsoils from different aridity regimes along a 2100 km grassland transect of northern China and conduct a 91 d decomposition experiment with and without the addition of 13C-labeled leaf litter under controlled temperature and moisture. CO2 release from both soil organic carbon (SOC) and fresh litter is measured, along with microbial biomass, extracellular enzyme activities, and soil and mineral properties. We find that neither microbial carbon use efficiency nor biomass-normalized metabolic quotient (qCO2) is related to the aridity of sampling sites. However, both fresh litter and SOC display the highest mineralization potentials in soils originating from the driest site. Using pathway analysis, we demonstrate that past aridity's effect is mediated by differential mechanisms for substrates of varied complexity. While microbial biomass plays a more important role in the decomposition of fresh litter, enzyme-catalyzed extracellular reactions predominantly govern the mineralization of SOC. Our findings provide novel evidence on the mechanisms underlying past aridity's effect on the mineralization potentials of organic matter with different qualities, which has significant implications for assessing and modeling decomposition in different aridity regimes.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biogeosciences, Copernicus GmbH, Vol. 18, No. 10 ( 2021-05-20), p. 3015-3028
    Abstract: Abstract. Headwater streams drain 〉70 % of global land areas but are poorly monitored compared with large rivers. The small size and low water buffering capacity of headwater streams may result in a high sensitivity to local hydrological alterations and different carbon transport patterns from large rivers. Furthermore, alpine headwater streams on the “Asian water tower”, i.e., Qinghai–Tibetan Plateau, are heavily affected by thawing of frozen soils in spring as well as monsoonal precipitation in summer, which may present contrasting spatial–temporal variations in carbon transport compared to tropical and temperate streams and strongly influence the export of carbon locked in seasonally frozen soils. To illustrate the unique hydro-biogeochemistry of riverine carbon in Qinghai–Tibetan headwater streams, here we carry out a benchmark investigation on the riverine carbon transport in the Shaliu River (a small alpine river integrating headwater streams) based on annual flux monitoring, sampling at a high spatial resolution in two different seasons and hydrological event monitoring. We show that riverine carbon fluxes in the Shaliu River were dominated by dissolved inorganic carbon, peaking in the summer due to high discharge brought by the monsoon. Combining seasonal sampling along the river and monitoring of soil–river carbon transfer during spring thaw, we also show that both dissolved and particulate forms of riverine carbon increased downstream in the pre-monsoon season due to increasing contribution of organic matter derived from thawed soils along the river. By comparison, riverine carbon fluctuated in the summer, likely associated with sporadic inputs of organic matter supplied by local precipitation events during the monsoon season. Furthermore, using lignin phenol analysis for both riverine organic matter and soils in the basin, we show that the higher acid-to-aldehyde (Ad/Al) ratios of riverine lignin in the monsoon season reflect a larger contribution of topsoil likely via increased surface runoff compared with the pre-monsoon season when soil leachate lignin Ad/Al ratios were closer to those in the subsoil than topsoil solutions. Overall, these findings highlight the unique patterns and strong links of carbon transport in alpine headwater catchments with local hydrological events. Given the projected climate warming on the Qinghai–Tibetan Plateau, thawing of frozen soils and alterations of precipitation regimes may significantly influence the alpine headwater carbon transport, with critical effects on the biogeochemical cycles of the downstream rivers. The alpine headwater catchments may also be utilized as sentinels for climate-induced changes in the hydrological pathways and/or biogeochemistry of the small basin.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biogeosciences, Copernicus GmbH, Vol. 15, No. 5 ( 2018-03-16), p. 1627-1641
    Abstract: Abstract. Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai–Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % of NEP in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 24, No. 5 ( 2024-03-04), p. 2803-2820
    Abstract: Abstract. Despite significant improvements in air quality in recent years, the Sichuan Basin (SCB) is still facing frequent haze pollution in winter, and the causes of severe haze formation have not yet been fully investigated. In this study, the chemical components of PM2.5 (i.e., particulate matter with an aerodynamic diameter of less than 2.5 µm) in a typical pollution period at the beginning of 2023 in Chengdu, a megacity in the SCB, were characterized by bulk-chemical and single-particle analysis, and the PM2.5 sources and formation mechanism of pollution were analyzed. The average mass concentration of PM2.5 during the study period was 95.6 ± 28.7 µg m−3. Organic matter (OM) was the most abundant component (35.3 %), followed by nitrate (22.0 %), sulfate (9.2 %) and ammonium (7.8 %). The individual aerosol particles were classified into five categories, i.e., mineral, OM, secondary inorganic aerosol (SIA), soot and fly ash/metal particles, and most of them were in the state of being internally mixed. The entire observation period could be divided into two non-pollution periods (NP-1 and NP-2) and two haze periods (Haze-1 and Haze-2). With the evolution of pollution, the bulk-chemical and single-particle analysis exhibited similar characteristics, suggesting that Haze-1 was mainly caused by pollutants related to fossil fuel combustion, especially local mobile sources, while Haze-2 was triggered by the rapidly increasing secondary pollutants, which mainly came from regional transmission. The PM2.5 sources included dust (8.5 %), biomass burning (3.5 %), coal combustion (15.4 %), industrial processes (6.5 %), vehicular emissions (25.6 %) and secondary sources (40.5 %). Analysis of Weather Research and Forecasting model with Chemistry (WRF-Chem) model results showed that the average contributions of local sources and regional transmission to pollution in Chengdu were the same (50 % vs. 50 %). In addition, the source composition and WRF-Chem simulation results in different periods confirmed our analysis of the formation mechanisms of the two haze events. This study confirms that further significant reductions in PM2.5 in Chengdu are still needed, and more effective policies for local emission reduction or joint prevention and control of regional air pollution will be necessary in the future.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2024
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...